Lipschitz Contractions, Unique Ergodicity and Asymptotics of Markov Semigroups
Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We are mainly concerned with the asymptotic behaviour of both discrete and continuous semigroups of Markov operators acting on the space $C(X)$ of all continuous functions on a compact metric space $X$. We establish a simple criterion under which such semigroups admit a unique invariant probability measure $\mu$ on $X$ that determines their limit behaviour on $C(X)$ and on $L^{p}(X; \mu)$. The criterion involves the behaviour of the semigroups on Lipschitz continuous functions and on the relevant Lipschitz seminorms. Finally, we discuss some applications concerning the Kantorovich operators on the hypercube and the Bernstein-Durrmeyer operators with Jacobi weights on $[0; 1]$. As a consequence we determine the limit of the iterates of these operators as well as of their corresponding Markov semigroups whose generators fall in the class of Fleming-Viot differential operators arising in population genetics.
@article{BUMI_2012_9_5_1_a0,
     author = {Altomare, Francesco and Ra\c{s}a, Ioan},
     title = {Lipschitz {Contractions,} {Unique} {Ergodicity} and {Asymptotics} of {Markov} {Semigroups}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {1},
     year = {2012},
     zbl = {1268.47013},
     mrnumber = {2919646},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a0/}
}
TY  - JOUR
AU  - Altomare, Francesco
AU  - Raşa, Ioan
TI  - Lipschitz Contractions, Unique Ergodicity and Asymptotics of Markov Semigroups
JO  - Bollettino della Unione matematica italiana
PY  - 2012
SP  - 1
EP  - 17
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a0/
LA  - en
ID  - BUMI_2012_9_5_1_a0
ER  - 
%0 Journal Article
%A Altomare, Francesco
%A Raşa, Ioan
%T Lipschitz Contractions, Unique Ergodicity and Asymptotics of Markov Semigroups
%J Bollettino della Unione matematica italiana
%D 2012
%P 1-17
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a0/
%G en
%F BUMI_2012_9_5_1_a0
Altomare, Francesco; Raşa, Ioan. Lipschitz Contractions, Unique Ergodicity and Asymptotics of Markov Semigroups. Bollettino della Unione matematica italiana, Série 9, Tome 5 (2012) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/BUMI_2012_9_5_1_a0/

[1] U. Abel - E. E. Berdysheva, Complete asymptotic expansion for multivariate Bernstein-Durrmeyer operators and quasi-interpolants, J. Approx. Theory 162 (2010), 201-220. | DOI | MR | Zbl

[2] A. Albanese - M. Campiti - E. Mangino, Regularity properties of semigroups generated by some Fleming-Viot type operators, J. Math. Anal. Appl., 335 (2007), 1259-1273. | DOI | MR | Zbl

[3] F. Altomare - M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, 17, W. de Gruyter, Berlin, New York, 1994. | DOI | MR | Zbl

[4] F. Altomare - M. Cappelletti Montano - V. Leonessa, On a generalization of Kantorovich operators on simplices and hypercubes, Adv. Pure Appl. Math., 1 (2010), 359-385. | DOI | MR | Zbl

[5] F. Altomare - M. Cappelletti Montano - V. Leonessa, Iterates of multidimensional Kantorovich-type operators and their associated positive $C_0$-semigroups, Studia Univ. Babes-Bolyai, Ser. Math., 56, no. 2 (2011). | MR | Zbl

[6] F. Altomare - I. Raşa, On some classes of diffusion equations and related approximation problems, in: M. G. de Bruin, D. H. Mache and J. Szabados (Eds), Trends and Applications in Constructive Approximation, ISNM, 151 (Birkhäuser Verlag, Basel, 2005), 13-26. | DOI | MR

[7] H. Bauer, Measure and Integration Theory, de Gruyter Studies in Mathematics, 26, W. de Gruyter, Berlin, New York, 2001. | DOI | MR

[8] E. E. Berdysheva - K. Jetter, Multivariate Bernstein-Durrmeyer operators with arbitrary weight functions, J. Approx. Theory, 162 (2010), 576-598. | DOI | MR | Zbl

[9] H. Berens - Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi-weights, in: C. K. Chui (Ed.), Approximation Theory and Functional Analysis, Academic Press, Boston, 1991, 25-46. | MR | Zbl

[10] S. Cerrai - Ph. Clément, Schauder estimates for a degenerate second order elliptic operator on a cube, J. Diff. Eq., 242 (2007), 287-321. | DOI | MR | Zbl

[11] R. A. De Vore - G. G. Lorentz, Constructive Approximation, Grundlehren der mathematischen Wissenschaften, 303, (Springer-Verlag, Berlin, 1993). | DOI | MR

[12] T. Eisner, Stability of Operators and Operator Semigroups, Operator Theory: Advances and Applications, 209, Birkhäuser Verlag, Basel, 2010. | MR

[13] I. Gavrea - M. Ivan, On the iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372 (2010), 366-368. | DOI | MR | Zbl

[14] U. Krengel, Ergodic Theorems, de Gruyter Studies in Mathematics, 6, W. de Gruyter, Berlin, New York, 1985. | DOI | MR

[15] D. H. Mache, Gewichtete Simultanapproximation in der $L_p$-Metrik durch das Verfahren der Kantorovič Operatoren, Dissertation, Univ. Dortmund, 1991. | Zbl

[16] D. Mugnolo - A. Rhandi, On the domain of a Fleming-Viot type operator on an $L^p$-space with invariant measure, to appear in Note Mat., 2012. | MR | Zbl

[17] J. Van Nerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Operator Theory: Advances and Applications, 88, Birkhäuser Verlag, Basel, 1996. | DOI | MR

[18] I. Raşa, Asymptotic behaviour and iterates of positive linear operators, Jaen J. Approx., I(2) (2009), 195-204. | MR

[19] I. Raşa, $C_0$-semigroups and iterates of positive linear operators: asymptotic behaviour, Rend. Circ. Mat. Palermo, Serie II, Suppl., 82 (2010), 123-142. | MR

[20] T. Vladislav - I. Raşa, Analiza Numerica: Aproximare, problema lui Cauchy abstracta, proiectori Altomare, Editura Tehnica, Bucuresti, 1999.

[21] Sh. Waldron, A generalized beta integral and the limit of the Bernstein-Durrmeyer operator with Jacobi weights, J. Approx. Theory, 122 (2003), 141-150. | DOI | MR | Zbl

[22] D. X. Zhou, Converse theorems for multidimensional Kantorovich operators, Anal. Math., 19 (1993), 85-100. | DOI | MR | Zbl