On an Equation From the Theory of Field Dislocation Mechanics
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 409-444
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Global existence and uniqueness results for a quasilinear system of partial differential equations in one space dimension and time representing the transport of dislocation density are obtained. Stationary solutions of the system are also studied, and an infinite dimensional class of equilibria is derived. These time (in)dependent solutions include both periodic and aperiodic spatial distributions of smooth fronts of plastic distortion representing dislocation twist boundary microstructure. Dominated by hyperbolic transport-like features and at the same time containing a large class of equilibria, our system differs qualitatively from regularized systems of hyperbolic conservation laws and neither does it fit into a gradient flow structure.
@article{BUMI_2011_9_4_3_a6,
author = {Acharya, Amit and Tartar, Luc},
title = {On an {Equation} {From} the {Theory} of {Field} {Dislocation} {Mechanics}},
journal = {Bollettino della Unione matematica italiana},
pages = {409--444},
publisher = {mathdoc},
volume = {Ser. 9, 4},
number = {3},
year = {2011},
zbl = {1233.35186},
mrnumber = {2906769},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a6/}
}
TY - JOUR AU - Acharya, Amit AU - Tartar, Luc TI - On an Equation From the Theory of Field Dislocation Mechanics JO - Bollettino della Unione matematica italiana PY - 2011 SP - 409 EP - 444 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a6/ LA - en ID - BUMI_2011_9_4_3_a6 ER -
Acharya, Amit; Tartar, Luc. On an Equation From the Theory of Field Dislocation Mechanics. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 409-444. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a6/