A Paradox in the Two Envelope Paradox?
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 337-345.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

. - We describe accurately the history of the two envelope paradox. We also formulate a new version of SchrÈodinger's paradox which reveals a close connection between the two sorts of paradoxes. Finally, we show that built into the most popular version of the two envelope paradox there is a logical paradox reminiscent of the unexpected hanging paradox.
@article{BUMI_2011_9_4_3_a2,
     author = {Vol\v{c}i\v{c}, Aljo\v{s}a},
     title = {A {Paradox} in the {Two} {Envelope} {Paradox?}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {337--345},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {3},
     year = {2011},
     zbl = {1281.60007},
     mrnumber = {2906765},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a2/}
}
TY  - JOUR
AU  - Volčič, Aljoša
TI  - A Paradox in the Two Envelope Paradox?
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 337
EP  - 345
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a2/
LA  - en
ID  - BUMI_2011_9_4_3_a2
ER  - 
%0 Journal Article
%A Volčič, Aljoša
%T A Paradox in the Two Envelope Paradox?
%J Bollettino della Unione matematica italiana
%D 2011
%P 337-345
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a2/
%G en
%F BUMI_2011_9_4_3_a2
Volčič, Aljoša. A Paradox in the Two Envelope Paradox?. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 337-345. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a2/

[B] B. Bolobás, Littlewood's miscellany, Cambridge University Press, 1986. | MR

[Bl] D. Blackwell, On the translation parameter problem for discrete variables, Ann. Math. Stat., 22 (1951), 391-399. | DOI | MR | Zbl

[C] T. Y. Chow, The Surprise Examination or Unexpected Hanging Paradox, Amer. Math. Monthly, 105, n. 1 (1998), 41-51. | DOI | MR | Zbl

[E] I. Ekeland, Monty Hall and Probability, Π in the Sky, n. 10, January 2007, 10- 11.

[G] M. Gardner, Aha! Gotcha, W. H. Freeman and Company, 1982. | MR

[K] M. Kraïtchik, Mathematical recreations. George Allen Unwin ltd, London, 1943.

[L] J. E. Littlewood, A mathematician's Miscellany, London, Methuen Co., 1953. | MR | Zbl

[Li] E. Linzer, The Two Envelope Paradox, Amer. Math. Monthly, 101, n. 5, (1994), 417-419. | DOI | MR

[N] B. Nalebuff, PUZZLES, Journal of Economic Perspectives, 2, n. 2 (Spring 1988), 171-181.

[P] G. Prodi, Il paradosso delle buste, Induzioni (1994), 33-63.

[Q] W. V. O. Quine, On a so-called paradox, Mind, 62 (1953), 65-?67.

[S] G. J. Székely, Paradoxes in probability theory and mathematical statistics, Reidel Publishing Company, 1986.

[SV] J. L. Snell - R. Vanderbei, Three bewitching paradoxes. In: J. L. Snell, (ed.) Topics in contemporary probability and its applications, 355-370. Bocca Raton, CRC Press, 1995. | MR | Zbl

[SSS] D. Samet - I. Samet - D. Schmeidler, One observation behind Two Envelope Paradox, Amer. Math. Monthly, 111, n. 4 (2004), 347-351. | DOI | MR | Zbl

[Z] S.L. Zabell, Loss and gain: the exchange paradox. In: J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith (ed.), Bayesian statistics 3. Proceedings of the third Valencia international meeting, 233-236. Clarendon Press, Oxford, 1988. | MR