Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 321-336.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this note we study the nonlinear composition operator $f \mapsto g \circ f$ in various spaces of differentiable functions over an interval. It turns out that this operator is always bounded in the corresponding norm, whenever it maps such a space into itself, but continuous only in exceptional cases.
@article{BUMI_2011_9_4_3_a1,
     author = {Appell, J. and Jes\'us, Z. and Mej{\'\i}a, O.},
     title = {Some {Remarks} on {Nonlinear} {Composition} {Operators} in {Spaces} of {Differentiable} {Functions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {321--336},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {3},
     year = {2011},
     zbl = {1229.47086},
     mrnumber = {2906764},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a1/}
}
TY  - JOUR
AU  - Appell, J.
AU  - Jesús, Z.
AU  - Mejía, O.
TI  - Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 321
EP  - 336
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a1/
LA  - en
ID  - BUMI_2011_9_4_3_a1
ER  - 
%0 Journal Article
%A Appell, J.
%A Jesús, Z.
%A Mejía, O.
%T Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions
%J Bollettino della Unione matematica italiana
%D 2011
%P 321-336
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a1/
%G en
%F BUMI_2011_9_4_3_a1
Appell, J.; Jesús, Z.; Mejía, O. Some Remarks on Nonlinear Composition Operators in Spaces of Differentiable Functions. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 321-336. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a1/

[1] A. Ambrosetti - G. Prodi, Analisi Non Lineare, Scuola Norm. Sup. Pisa, Pisa 1973.

[2] A. Ambrosetti - G. Prodi, A Primer of Nonlinear Analysis, Cambridge Univ. Press, Cambridge 1992. | MR | Zbl

[3] J. Appell - N. Guanda - N. Merentes - J. L. Sánchez, Some boundedness and continuity properties of nonlinear composition operators: A survey, Comm. Applied Anal., to appear. | MR | Zbl

[4] J. Appell - N. Guanda - M. Väth, Function spaces with the Matkowski property and degeneracy phenomena for nonlinear composition operators, Fixed Point Theory (Cluj), to appear. | MR

[5] J. Appell - P. P. Zabrejko, Remarks on the superposition operator problem in various functions spaces, Complex Variables Elliptic Equ., 55, 8 (2010), 727-737. | DOI | MR | Zbl

[6] G. Bourdaud - M. Lanza De Cristoforis - W. Sickel, Superposition operators and functions of bounded p-variation II, Nonlin. Anal. TMA, 62 (2005), 483-517. | DOI | MR | Zbl

[7] G. Bourdaud - M. Lanza De Cristoforis - W. Sickel, Superposition operators and functions of bounded p-variation, Rev. Mat. Iberoamer., 22, 2 (2006), 455-487. | fulltext EuDML | DOI | MR | Zbl

[8] B. R. Gelbaum - J. M. H. Olmsted, Counterexamples in Analysis, Holden-Day, San Francisco 1964. | MR | Zbl

[9] M. Goebel - F. Sachweh, On the autonomous Nemytskij operator in Hölder spaces, Zeitschr. Anal. Anw., 18, 2 (1999), 205-229. | fulltext EuDML | DOI | MR | Zbl

[10] C. Jordan, Sur la séries de Fourier, C. R. Acad. Sci. Paris, 2 (1881), 228-230.

[11] M. Josephy, Composing functions of bounded variation, Proc. Amer. Math. Soc., 83, 2 (1981), 354-356. | DOI | MR | Zbl

[12] R. Kannan - C. K. Krueger, Advanced Analysis on the Real Line, Springer, Berlin 1996. | MR | Zbl

[13] M. Marcus - V. J. Mizel, Superposition mappings which operate on Sobolev spaces, Nonlin. Anal. TMA, 2, 2 (1978), 257-258. | DOI | MR | Zbl

[14] M. Marcus - V. J. Mizel, Complete characterization of functions which act, via superposition, on Sobolev spaces, Trans. Amer. Math. Soc., 251 (1979), 187-218. | DOI | MR | Zbl

[15] J. Matkowski, Form of Lipschitz operators of substitution in Banach spaces of differentiable functions, Zeszyty Nauk. Politech. Łódz. Mat., 17 (1984), 5-10. | MR | Zbl

[16] N. Merentes, On the composition operator in $AC[a; b]$, Collect. Math., 42, 1 (1991), 121-127. | MR | Zbl

[17] N. Merentes - S. Rivas, El operador de composición en espacios de funciones con algún tipo de variación acotada, Novena Escuela Venez. Mat., Mérida (Venezuela) 1996.

[18] N. Merentes - S. Rivas, On the composition operator between spaces $BV_p[a; b]$ and $BV[a; b]$, Sci. Math., 1, 3 (1998), 287-292. | MR

[19] F. Riesz, Untersuchungen über Systeme integrierbarer Funktionen, Math. Annalen, 69 (1910), 449-497. | fulltext EuDML | DOI | MR | Zbl

[20] A. M. Russell, An integral representation for a generalised variation of a function, Bull. Austral. Math. Soc., 11 (1974), 225-229. | DOI | MR | Zbl