On the Number of Solutions of Some Semilinear Elliptic Problems
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 313-319.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We show that a class of semilinear boundary value problems possess exactly one positive solution and one negative solution.
@article{BUMI_2011_9_4_3_a0,
     author = {Ambrosetti, Antonio},
     title = {On the {Number} of {Solutions} of {Some} {Semilinear} {Elliptic} {Problems}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {313--319},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {3},
     year = {2011},
     zbl = {1235.35125},
     mrnumber = {2906763},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a0/}
}
TY  - JOUR
AU  - Ambrosetti, Antonio
TI  - On the Number of Solutions of Some Semilinear Elliptic Problems
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 313
EP  - 319
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a0/
LA  - en
ID  - BUMI_2011_9_4_3_a0
ER  - 
%0 Journal Article
%A Ambrosetti, Antonio
%T On the Number of Solutions of Some Semilinear Elliptic Problems
%J Bollettino della Unione matematica italiana
%D 2011
%P 313-319
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a0/
%G en
%F BUMI_2011_9_4_3_a0
Ambrosetti, Antonio. On the Number of Solutions of Some Semilinear Elliptic Problems. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 3, pp. 313-319. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_3_a0/

[1] A. Ambrosetti - A. Malchiodi, Nonlinear analysis and semilinear elliptic problems, Cambridge Studies in Advanced Mathematics No. 104, Cambridge Univ. Press, 2006 | DOI | MR | Zbl

[2] A. Ambrosetti - G. Mancini, Sharp nonuniqueness results for some nonlinear problems, J. Nonlin. Anal. TMA, 3-5 (1979), 635-645. | DOI | MR

[3] A. Ambrosetti - G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics No. 34, Cambridge Univ. Press, 1993. | MR | Zbl

[4] A. Ambrosetti - G. Prodi, On the inversion of some differentiable appings with singularities between Banach spaces. Ann. Mat. Pura Appl., 93 (1972), 231-246. | DOI | MR | Zbl

[5] D. G. De Figueiredo, Lectures on Boundary Value Problems of Ambrosetti-Prodi Type, 12th Brazilian Seminar of Analysis, Sao Paulo, Brasil, 1980.

[6] D. G. De Figueiredo, Positive solutions of semilinear elliptic problems, in Differential equations, Lecture Notes in Math. 957 Springer, 1982. | MR | Zbl

[7] D. G. De Figueiredo - J. P. Gossez, Strict monotonicity of eigenvalues and Unique Continuation, Comm. P.D.E., 17-1 (1993), 339-346. | DOI | MR

[8] B. Ruf, Singularity theory and the geometry of a nonlinear elliptic equation, Ann. Sc. Norm. Sup. Pisa, 17 (1990), 1-33. | fulltext EuDML | MR | Zbl

[9] B. Ruf, Forced secondary bifurcation in an elliptic boundary value problem, Diff. Int. Eq., 5-4 (1992), 793-804. | MR | Zbl