Gysin Map and Atiyah-Hirzebruch Spectral Sequence
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 263-273.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We discuss the relations between the Atiyah-Hirzebruch spectral sequence and the Gysin map for a multiplicative cohomology theory, on spaces having the homotopy type of a finite CW-complex. In particular, let us fix such a multiplicative cohomology theory $h^{*}$ and let us consider a smooth manifold $X$ of dimension $n$ and a compact submanifold $Y$ of dimension $p$, satisfying suitable hypotheses about orientability. We prove that, starting the Atiyah-Hirzebruch spectral sequence with the Poincaré dual of $Y$ in $X$, which, in our setting, is a simplicial cohomology class with coefficients in $h^{0}\{*\}$, if such a class survives until the last step, it is represented in $E^{n-p,0}_{\infty}$ by the image via the Gysin map of the unit cohomology class of $Y$. We then prove the analogous statement for a generic cohomology class on $Y$.
@article{BUMI_2011_9_4_2_a6,
     author = {Ferrari Ruffino, Fabio},
     title = {Gysin {Map} and {Atiyah-Hirzebruch} {Spectral} {Sequence}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {263--273},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {2},
     year = {2011},
     zbl = {1241.55011},
     mrnumber = {2840607},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a6/}
}
TY  - JOUR
AU  - Ferrari Ruffino, Fabio
TI  - Gysin Map and Atiyah-Hirzebruch Spectral Sequence
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 263
EP  - 273
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a6/
LA  - en
ID  - BUMI_2011_9_4_2_a6
ER  - 
%0 Journal Article
%A Ferrari Ruffino, Fabio
%T Gysin Map and Atiyah-Hirzebruch Spectral Sequence
%J Bollettino della Unione matematica italiana
%D 2011
%P 263-273
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a6/
%G en
%F BUMI_2011_9_4_2_a6
Ferrari Ruffino, Fabio. Gysin Map and Atiyah-Hirzebruch Spectral Sequence. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 263-273. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a6/

[1] M. Atiyah - F. Hirzebruch, Vector Bundles and Homogeneous Spaces, Michael Atiyah: Collected works, v. 2. | Zbl

[2] C. Bohr - B. Hanke - D. Kotschick, Cycles, submanifolds and structures on normal bundles, Manuscripta Math., 108 (2002), 483-494. | DOI | MR | Zbl

[3] G. E. Bredon, Topology and geometry, Springer-Verlag, 1993. | DOI | MR

[4] H. Cartan - S. Eilenberg, Homological algebra, Princeton University Press, 1956. | MR

[5] A. Dold, Relations between ordinary and extraordinary homology, Colloquium on Algebraic Topology, Institute of Mathematics Aarhus University (1962), 2-9.

[6] F. Ferrari Ruffino - R. Savelli, Comparing two approaches to the K-theory classification of D-branes, Journal of Geometry and Physics, 61 (2011), 191-212. | DOI | MR | Zbl

[7] P. Griffiths - J. Harris, Principles of algebraic geometry, John Wiley Sons, 1978. | MR | Zbl

[8] J. R. Munkres, Elementary Differential Topology, Princeton University Press, 1968. | MR

[9] Y. B. Rudyak, On Thom spectra, orientability and cobordism, Springer monographs in mathematics. | MR | Zbl