Gysin Map and Atiyah-Hirzebruch Spectral Sequence
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 263-273
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
We discuss the relations between the Atiyah-Hirzebruch spectral sequence and the Gysin map for a multiplicative cohomology theory, on spaces having the homotopy type of a finite CW-complex. In particular, let us fix such a multiplicative cohomology theory $h^{*}$ and let us consider a smooth manifold $X$ of dimension $n$ and a compact submanifold $Y$ of dimension $p$, satisfying suitable hypotheses about orientability. We prove that, starting the Atiyah-Hirzebruch spectral sequence with the Poincaré dual of $Y$ in $X$, which, in our setting, is a simplicial cohomology class with coefficients in $h^{0}\{*\}$, if such a class survives until the last step, it is represented in $E^{n-p,0}_{\infty}$ by the image via the Gysin map of the unit cohomology class of $Y$. We then prove the analogous statement for a generic cohomology class on $Y$.
@article{BUMI_2011_9_4_2_a6,
author = {Ferrari Ruffino, Fabio},
title = {Gysin {Map} and {Atiyah-Hirzebruch} {Spectral} {Sequence}},
journal = {Bollettino della Unione matematica italiana},
pages = {263--273},
publisher = {mathdoc},
volume = {Ser. 9, 4},
number = {2},
year = {2011},
zbl = {1241.55011},
mrnumber = {2840607},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a6/}
}
Ferrari Ruffino, Fabio. Gysin Map and Atiyah-Hirzebruch Spectral Sequence. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 263-273. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a6/