Higher Secants of Spinor Varieties
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 213-235.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $S_{h}$ be the even pure spinors variety of a complex vector space $V$ of even dimension $2h$ endowed with a non degenerate quadratic form $Q$ and let $\sigma_{k}(S_{h})$ be the $k$-secant variety of $S_{h}$. We decribe an algorithm which computes the complex dimension of $\sigma_{k}(S_{h})$. Then, by using an inductive argument, we get our main result: $\sigma_{k}(S_{h})$ has the expected dimension except when $h \in \{7, 8\}$. Also we provide theoretical arguments which prove that $S_{7}$ has a defective 3-secant variety and $S_{8}$ has defective 3-secant and 4-secant varieties.
@article{BUMI_2011_9_4_2_a2,
     author = {Angelini, Elena},
     title = {Higher {Secants} of {Spinor} {Varieties}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {213--235},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {2},
     year = {2011},
     zbl = {1253.15032},
     mrnumber = {2840603},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a2/}
}
TY  - JOUR
AU  - Angelini, Elena
TI  - Higher Secants of Spinor Varieties
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 213
EP  - 235
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a2/
LA  - en
ID  - BUMI_2011_9_4_2_a2
ER  - 
%0 Journal Article
%A Angelini, Elena
%T Higher Secants of Spinor Varieties
%J Bollettino della Unione matematica italiana
%D 2011
%P 213-235
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a2/
%G en
%F BUMI_2011_9_4_2_a2
Angelini, Elena. Higher Secants of Spinor Varieties. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 213-235. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a2/

[1] H. Abo - G. Ottaviani - C. Peterson, Non defectivity of Grassmannians of planes, arXiv:0901.2601v1 [math.AG], to appear on Journal of Algebraic Geometry. | DOI | MR | Zbl

[2] H. Abo - G. Ottaviani - C. Peterson, Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc., 361, no. 2 (2009), 767-792. | DOI | MR | Zbl

[3] J. Alexander - A. Hirschowitz, Polinomial interpolation in several variables, Journal of Algebraic Geometry, 4, n. 2 (1995), 201-222. | MR | Zbl

[4] E. Angelini, Varietà secanti alle varietà spinoriali, Laurea Thesis, Università di Firenze (2009).

[5] A. Boralevi - J. Buczynski, Secants of Lagrangian Grassmannians, arXiv:1006.1925v1 [math.AG], to appear on Annali di Matematica. | DOI | MR | Zbl

[6] K. Baur - J. Draisma - W. De Graaf, Secant dimensions of minimal orbits: computations and conjectures, Experimental Mathematics, 16, no. 2 (2007), 239-250. | MR | Zbl

[7] M. C. Brambilla - G. Ottaviani, On the Alexander-Hirschowitz Theorem, J. Pure Appl. Algebra, 212 (2008), 1229-1251. | DOI | MR | Zbl

[8] C. Chevalley, The algebraic theory of spinors, Columbia University Press, New York (1954). | MR | Zbl

[9] L. Chiantini - C. Ciliberto, Weakly defective varieties , Trans. Amer. Math. Soc., 354, no 1 (2001), 151-178. | DOI | MR | Zbl

[10] M. V. Catalisano - A. V. Geramita - A. Gimigliano, Secant varietes of $\mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ (n-times) are NOT Defective for $n \geq 5''$, arXiv:0809.1701, to appear on Journal of Algebraic Geometry. | DOI | MR | Zbl

[11] H. Kaji, Homogeneous projective varieties with degenerate secants, Trans. Amer. Math. Soc., 351, no 2 (1999), 533-545. | DOI | MR | Zbl

[12] D. R. Grayson - M. E. Stillman, Macaulay2, Software system available at http:// www.math.uiuc.edu/Macaulay2/.

[13] J. M. Landsberg, The geometry of Tensors with applications, Book in preparation (2009). | MR

[14] J. M. Landsberg - J. Weyman, On secant varieties of Compact Hermitian Symmetric Spaces, J. Pure Appl. Algebra, 213 (2009), 2075-2086. | DOI | MR | Zbl

[15] L. Manivel, On spinor varieties and their secants, SIGMA 5 (2009) 078, special volume ``Elie Cartan and Differential Geometry''. | DOI | MR

[16] F. L. Zak, Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs, 127. AMS, Providence, RI, 1993. | MR | Zbl