The Contribution of A. Andreotti to the Theory of Complexes of p.d.o.'s
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 301-306.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_2011_9_4_2_a10,
     author = {Nacinovich, Mauro},
     title = {The {Contribution} of {A.} {Andreotti} to the {Theory} of {Complexes} of p.d.o.'s},
     journal = {Bollettino della Unione matematica italiana},
     pages = {301--306},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {2},
     year = {2011},
     zbl = {1228.01044},
     mrnumber = {2840621},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a10/}
}
TY  - JOUR
AU  - Nacinovich, Mauro
TI  - The Contribution of A. Andreotti to the Theory of Complexes of p.d.o.'s
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 301
EP  - 306
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a10/
LA  - en
ID  - BUMI_2011_9_4_2_a10
ER  - 
%0 Journal Article
%A Nacinovich, Mauro
%T The Contribution of A. Andreotti to the Theory of Complexes of p.d.o.'s
%J Bollettino della Unione matematica italiana
%D 2011
%P 301-306
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a10/
%G en
%F BUMI_2011_9_4_2_a10
Nacinovich, Mauro. The Contribution of A. Andreotti to the Theory of Complexes of p.d.o.'s. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 301-306. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a10/

[1] A. Andreotti, Complexes of partial differential operators, Yale University Press, New Haven, Conn., 1975, James K. Whittemore Lectures in Mathematics given at Yale University, May 1974, Yale Mathematical Monographs, No. 6. | MR | Zbl

[2] A. Andreotti, Complessi di operatori differenziali, Boll. Un. Mat. Ital. A (5) 13 (1976), no. 2, 273-281. | MR

[3] A. Andreotti, Selecta di opere. Vol. III, Scuola Normale Superiore, Pisa, 1999, Complessi di operatori differenziali. [Complex of differential operators], With an introduction by M. Nacinovich. | MR

[4] A. Andreotti and G. A. Fredricks, Embeddability of real analytic Cauchy-Riemann manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), no. 2, 285-304. | fulltext EuDML | MR | Zbl

[5] A. Andreotti, G. A. Fredricks, and M. Nacinovich, Differential equations without solutions, Rend. Sem. Mat. Fis. Milano, 50 (1980), 11-22 (1982). | DOI | MR | Zbl

[6] A. Andreotti, G. A. Fredricks, and M. Nacinovich, On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 3, 365-404. | fulltext EuDML | MR | Zbl

[7] A. Andreotti and Hans Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. | fulltext EuDML | MR | Zbl

[8] A. Andreotti and C. D. Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 299-324. | fulltext EuDML | MR | Zbl

[9] A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. I. Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 325-363. | MR | Zbl

[10] A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. II. Vanishing theorems, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 747-806. | MR | Zbl

[11] A. Andreotti, C. D. Hill, S. Łojasiewicz, and B. Mackichan, Complexes of differential operators. The Mayer-Vietoris sequence, Invent. Math. 35 (1976), 43-86. | fulltext EuDML | DOI | MR | Zbl

[12] A. Andreotti, C. D. Hill, S. Łojasiewicz, and B. Mackichan, Mayer-Vietoris sequences for complexes of differential operators, Bull. Amer. Math. Soc., 82 (1976), no. 3, 487-490. | DOI | MR | Zbl

[13] A. Andreotti and M. Nacinovich, Analytic convexity. Some comments on an example of de Giorgi and Piccinini, Complex analysis and its applications (Lectures, Internat. Sem., Trieste, 1975), Vol. II, Internat. Atomic Energy Agency, Vienna, 1976, pp. 25-37. | MR

[14] A. Andreotti and M. Nacinovich, Complexes of partial differential operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 4, 553-621. | fulltext EuDML | MR | Zbl

[15] A. Andreotti and M. Nacinovich, Some remarks on formal Poincaré lemma, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 295-305. | MR

[16] A. Andreotti and M. Nacinovich, Convexité analytique, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975-1977), Lecture Notes in Math., vol. 670, Springer, Berlin, 1978, pp. 341-351. | MR

[17] A. Andreotti and M. Nacinovich, Convexité analytique. II. Résultats positifs, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975-1977), Lecture Notes in Math., vol. 670, Springer, Berlin, 1978, pp. 388-393. | MR

[18] A. Andreotti and M. Nacinovich, On the envelope of regularity for solutions of homogeneous systems of linear partial differential operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), no. 1, 69-141. | fulltext EuDML | MR | Zbl

[19] A. Andreotti and M. Nacinovich, Analytic convexity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 2, 287- 372. | fulltext EuDML | MR

[20] A. Andreotti and M. Nacinovich, Analytic convexity and the principle of Phragmén-Lindelöf, Scuola Normale Superiore Pisa, Pisa, 1980, Pubblicazioni della Classe di Scienze: Quaderni. [Publications of the Science Department: Monographs]. | fulltext EuDML | MR | Zbl

[21] A. Andreotti and M. Nacinovich, Noncharacteristic hypersurfaces for complexes of differential operators, Ann. Mat. Pura Appl. (4) 125 (1980), 13-83. | DOI | MR | Zbl

[22] A. Andreotti and M. Nacinovich, On analytic and $C^\infty$ Poincaré lemma, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York, 1981, pp. 41-93. | MR

[23] A. Andreotti and M. Nacinovich, The ``Poincaré lemma'' for complexes of differential operators, Proceedings of the mathematical congress in celebration of the one hundredth birthday of Guido Fubini and Francesco Severi (Turin, 1979), vol. 115, 1981, pp. 177-186 (1982). | MR

[24] A. Andreotti and E. Vesentini, Sopra un teorema di Kodaira, Ann. Scuola Norm. Sup. Pisa (3) 15 (1961), 283-309. | fulltext EuDML | MR

[25] A. Andreotti and E. Vesentini, Disuguaglianze di Carleman sopra una varietà complessa, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 35 (1963), 431-434. | MR

[26] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. (1965), no. 25, 81-130. | fulltext EuDML | MR | Zbl

[27] A. Andreotti and E. Vesentini, Erratum to: Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. (1965), no. 27, 153-155. | fulltext EuDML | MR | Zbl