Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2011_9_4_2_a1, author = {Bassetti, Federico and Gabetta, Ester}, title = {Survey on {Probabilistic} {Methods} for the {Study} of {Kac-like} {Equations}}, journal = {Bollettino della Unione matematica italiana}, pages = {187--212}, publisher = {mathdoc}, volume = {Ser. 9, 4}, number = {2}, year = {2011}, zbl = {1229.60023}, mrnumber = {2840602}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a1/} }
TY - JOUR AU - Bassetti, Federico AU - Gabetta, Ester TI - Survey on Probabilistic Methods for the Study of Kac-like Equations JO - Bollettino della Unione matematica italiana PY - 2011 SP - 187 EP - 212 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a1/ LA - en ID - BUMI_2011_9_4_2_a1 ER -
Bassetti, Federico; Gabetta, Ester. Survey on Probabilistic Methods for the Study of Kac-like Equations. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 187-212. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a1/
[1] On distributional properties of perpetuities. J. Theoret. Probab. 22 (2009), 666-682. | DOI | MR | Zbl
- - ,[2] Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. Birkhäuser Verlag (2008). | MR
- - ,[3] Kinetics models of inelastic gases. Math. Models Methods Appl. Sci., 12 (2002), 965-983. | DOI | MR | Zbl
- - ,[4] Central limit theorem for a class of one-dimensional kinetic equations. Probab. Theory Related Fields (2010) (Published on line). | DOI | MR | Zbl
- - ,[5] Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model. J. Stat. Phys., 133 (2008), 683-710 | DOI | MR | Zbl
- - ,[6] On the depth of the trees in the McKean representation of Wilds sums. Transport Theory Statist. Phys., 36 (2007), 421-438. | DOI | MR | Zbl
- - ,[7] Explicit equilibria in a kinetic model of gambling. Phys. Rev. E, 81 (2010), 66-115. | DOI | MR
- ,[8] Self-similarity in random collision processes. Phys. Rev. E, 68 (2003).
- - - ,[9] The theory of the spatially Uniform Boltzmann equation for Maxwell molecules. Sov. Sci. Review C, 7 (1988), 112-229. | MR
,[10] On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Statist. Phys., 98 (2000), 743-773. | DOI | MR | Zbl
- - ,[11] On the self-similar asymptotics for generalized nonlinear kinetic maxwell models. Comm. Math. Phys., 291 (2009), 599-644. | DOI | MR | Zbl
- - ,[12] Exact eternal solutions of the Boltzmann equation. J. Stat. Phys., 106 (2002), 1019-1038. | DOI | MR | Zbl
- ,[13] Self similar solutions of the Boltzmann equation and their applications. J. Stat. Phys., 106 (2002), 1039-1071. | DOI | MR | Zbl
- ,[14] Probability. Corrected reprint of the 1968 original. Classics in Applied Mathematics, 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). | DOI | MR
,[15] Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Comm. Pure Appl. Math., 53 (2000), 370-397. | DOI | MR | Zbl
- - ,[16] On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. J. Funct. An., 220 (2005), 362-387. | DOI | MR | Zbl
- - ,[17] Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys., 199 (1999), 521-546. | DOI | MR | Zbl
- - ,[18] On the rate of explosion for infinite energy solutions of the spatially homogeneous Boltzmann equation. J. Stat. Phys., 129 (2007), 699-723. | DOI | MR | Zbl
- - ,[19] Probabilistic investigations on the explosion of solutions of the Kac equation with infinite energy initial distribution. J. Appl. Probab., 45 (2008), 95-106. | DOI | MR | Zbl
- - ,[20] Fast and slow convergence to equilibrium for Maxwellian molecules via Wild sums. J. Stat. Phys., 112 (2003), 59-134. | DOI | MR | Zbl
- ,[21] Theory and application of the Boltzmann equation. Elsevier, New York (1975). | MR | Zbl
,[22] The Boltzmann equation and its applications. Applied Mathematical Sciences, 67. Springer-Verlag, New York (1988). | DOI | MR | Zbl
,[23] Mathematical methods in kinetic theory. Second edition. Plenum Press, New York (1990). | DOI | MR | Zbl
,[24] Shear flow of a granular material. J. Statist. Phys., 102 (2001), 1407-1415. | DOI | MR | Zbl
,[25] The mathematical theory of dilute gases. Applied Mathematical Sciences, 106. Springer-Verlag, New York (1994). | DOI | MR | Zbl
- - ,[26] C. CERCIGNANI - E. GABETTA Eds., Transport phenomena and kinetic theory. Applications to Gases, Semiconductors, Photons, and Biological Systems. Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, MA (2007). | DOI | MR
[27] On the approximation to a stable probability distribution. In Studies in Mathematical Analysis and Related Topics. Stanford Univ. Press. (1962), 70-76. | MR
,[28] On asymptotic expansions for sums of independent random variables with a limiting stable distribution. Sankhya Ser. A, 25 (1963), 13-24. Addendum, ibid. 216. | MR
,[29] Reaching the best possible rate of convergence to equilibrium for solutions of Kac's equation via central limit theorem. Ann. Appl. Probab., 19 (2009), 186-209. | DOI | MR | Zbl
- - ,[30] The role of the central limit theorem in discovering sharp rates of convergence to equilibrium for the solution of the Kac equation. Ann. Appl. Probab., 20 (2010), 430-461. | DOI | MR | Zbl
- ,[31] Random trees. An interplay between combinatorics and probability. Springer Wien New York, Vienna (2009). | DOI | MR | Zbl
,[32] Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete, 64 (1983), 275-301. | DOI | MR | Zbl
- ,[33] A central limit problem for partially exchangeable random variables. Theory Probab. Appl., 41 (1996), 224-246. | DOI | MR | Zbl
- - ,[34] Results on optimal rate of convergence to equilibrium for spatially homogeneous Maxwellian gases. In Transport phenomena and kinetic theory (2007), 19-37, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, MA. | DOI | MR | Zbl
,[35] Some new results for McKean's graphs with applications to Kac's equation. J. Stat. Phys., 125 (2006), 947-974. | DOI | MR | Zbl
- ,[36] Central limit theorem for the solution of the Kac equation. Ann. Appl. Probab., 18 (2008), 2320-2336. | DOI | MR | Zbl
- ,[37] Central limit theorem for the solution of the Kac equation: Speed of approach to equilibrium in weak metrics. Probab Theory Related Fields, 146 (2010), 451-480. | DOI | MR | Zbl
- ,[38] Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Cambridge, MA (1954). | MR | Zbl
- ,[39] Perpetuities with thin tails. Adv. in Appl. Probab., 28 (1996), 463-480. | DOI | MR | Zbl
- ,[40] Stability of perpetuities. Ann. Probab., 28 (2000), 1195-1218. | DOI | MR | Zbl
- ,[41] History of the Central Limit Theorem. Springer (2010).
,[42] Two-sided bounds on the rate of convergence to a stable law. Z. Wahrsch. Verw. Gebiete, 57 (1981), 349-364. | DOI | MR | Zbl
,[43] Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen (1971). | MR | Zbl
- ,[44] Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 3 (1954-1955), 171-197. University of California Press, Berkeley and Los Angeles (1956). | MR
,[45] Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rational Mech. Anal., 21 (1966), 343-367. | DOI | MR | Zbl
.,[46] An exponential formula for solving Boltmann's equation for a Maxwellian gas. J. Combinatorial Theory, 2 (1967), 358-382. | MR | Zbl
.,[47] Fixed points of a generalized smoothing transformation and applications to the branching random walk. Adv. in Appl. Probab., 30 (1998), 85-112. | DOI | MR | Zbl
,[48] On generalized multiplicative cascades. Stochastic Process. Appl., 86 (2000), 263-286. | DOI | MR | Zbl
,[49] On steady distributions of kinetic models of conservative economies. J. Stat. Phys., 130 (2008), 1087-1117. | DOI | MR | Zbl
- ,[50] Propagation of Sobolev regularity for a class of random kinetic models on the real line. Nonlinearity, 23 (2010), 2081-2100 | DOI | MR | Zbl
- ,[51] Limit theorems of probability theory. Sequences of independent random variables. Oxford Studies in Probability. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1995). | MR | Zbl
,[52] Asymptotic properties of the inelastic Kac model. J. Statist. Phys., 114 (2004), 1453-1480. | DOI | MR | Zbl
- ,[53] Convergence to Equilibrium of the Solution of Kac's Kinetic Equation. A Probabilistic View. Bollettino UMI, 2 (2009), 175-198. | fulltext bdim | fulltext EuDML | MR | Zbl
,[54] Probability metrics and the stability of stochastic models. Wiley, New York (1991). | MR | Zbl
,[55] Èquations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete, 66 (1986), 559-592. | DOI | MR
,[56] An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas. Z. Wahrsch. Verw. Gebiete, 27 (1973), 47-52. | DOI | MR | Zbl
,[57] Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete, 46 (1978), 67-105. | DOI | MR | Zbl
,[58] Wealth redistribution in conservative linear kinetic models with taxation. Europhysics Letters, 88 (2009), 10007.
,[59] On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Probab., 11 (1979), 750-783. | DOI | MR | Zbl
,[60] Topics in optimal transportation. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI (2003). | DOI | MR | Zbl
,[61] Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften, 338. Springer-Verlag, Berlin (2009). | DOI | MR | Zbl
,[62] On Boltzmann's equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc., 47 (1951), 602-609. | MR | Zbl
,