From the Boltzmann Equation to Hydrodynamic Equations in thin Layers
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 163-186.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The present paper discusses an asymptotic theory for the Boltzmann equation leading to either the Prandtl incompressible boundary layer equations, or the incompressible hydrostatic equations. These results are formal, and based on the same moment method used in [C. Bardos, F. Golse, D. Levermore, J. Stat. Phys 63 (1991), pp. 323-344] to derive the incompressible Euler and Navier-Stokes equations from the Boltzmann equation.
@article{BUMI_2011_9_4_2_a0,
     author = {Golse, Fran\c{c}ois},
     title = {From the {Boltzmann} {Equation} to {Hydrodynamic} {Equations} in thin {Layers}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {163--186},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {2},
     year = {2011},
     zbl = {1235.35208},
     mrnumber = {2840601},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a0/}
}
TY  - JOUR
AU  - Golse, François
TI  - From the Boltzmann Equation to Hydrodynamic Equations in thin Layers
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 163
EP  - 186
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a0/
LA  - en
ID  - BUMI_2011_9_4_2_a0
ER  - 
%0 Journal Article
%A Golse, François
%T From the Boltzmann Equation to Hydrodynamic Equations in thin Layers
%J Bollettino della Unione matematica italiana
%D 2011
%P 163-186
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a0/
%G en
%F BUMI_2011_9_4_2_a0
Golse, François. From the Boltzmann Equation to Hydrodynamic Equations in thin Layers. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 163-186. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a0/

[1] K. Aoki, unpublished manuscript, 1998.

[2] V. Arnold - B. Khesin, Topological methods in hydrodynamics, Springer, New York NY 1998. | MR | Zbl

[3] C. Bardos - F. Golse - D. Levermore, Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles C. R. Acad. Sci., 309 (1989), 727-732. | MR | Zbl

[4] C. Bardos - F. Golse - D. Levermore, Fluid Dynamic Limits of the Boltzmann Equation I, J. Stat. Phys., 63 (1991), 323-344. | DOI | MR

[5] C. Bardos - F. Golse - D. Levermore, Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation, Comm. Pure and Applied Math., 46 (1993), 667-753. | DOI | MR | Zbl

[6] C. Bardos - F. Golse - Y. Sone, Half-Space Problems for the Boltzmann Equation: A Survey, J. Stat. Phys., 124 (2006), 275-300. | DOI | MR | Zbl

[7] C. Bardos - D. Levermore - S. Ukai - T. Yang, Kinetic equations: fluid dynamical limits and viscous heating, Bull. Inst. Math. Acad. Sin. (N.S.), 3 (2008), 1-49. | MR | Zbl

[8] C. Bardos - S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models and Methods in the Appl. Sci., 1 (1991), 235-257. | DOI | MR | Zbl

[9] G. K. Batchelor, An introduction to fluid dynamics, Cambridge Univ. Press, 2000. | MR

[10] F. Bouchut - F. Golse - M. Pulvirenti, Kinetic Equations and Asymptotic Theory, L. Desvillettes & B. Perthame ed., Editions scientifiques et médicales Elsevier, Paris, 2000. | MR

[11] Y. Brenier, Homogeneous hydrostatic flows with convex velocity profile, Nonlinearity, 12 (1999), 495-512. | DOI | MR | Zbl

[12] Y. Brenier, Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math., 127 (2003), 585-595. | DOI | MR | Zbl

[13] R. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation, Comm. on Pure and Appl. Math., 33 (1980), 651-666. | DOI | MR | Zbl

[14] R. Caflisch - M. Sammartino, Existence and singularities for the Prandtl boundary layer equations, Z. Angew. Math. Mech., 80 (2000), 733-744. | DOI | MR | Zbl

[15] C. Cercignani, Bifurcation problems in fluid mechanics, Meccanica - J. Italian Assoc. Theoret. Appl. Mech., 5 (1970), 7-16. | MR | Zbl

[16] C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New-York NY, 1988. | DOI | MR | Zbl

[17] C. Cercignani - R. Illner - M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer Verlag, New York NY, 1994. | DOI | MR | Zbl

[18] C. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179. | DOI | MR | Zbl

[19] A. Demasi - R. Esposito - J. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Comm. on Pure and Appl. Math., 42 (1990), 1189-1214. | DOI | MR | Zbl

[20] R. Diperna, Uniqueness of solutions to hyperbolic conservation laws, Indiana U. Math. J., 28 (1979), 137-188. | DOI | MR | Zbl

[21] R. Diperna - P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., 130 (1989), 321-366. | DOI | MR | Zbl

[22] W. E, B. Engquist, Blowup of solutions of the unsteady Prandtl equation, Comm. on Pure and Appl. Math., 50 (1997), 1287-1293. | DOI | MR | Zbl

[23] F. Golse - D. Levermore, The Stokes-Fourier and Acoustic Limits for the Boltzmann Equation, Comm. on Pure and Appl. Math., 55 (2002), 336-393. | DOI | MR | Zbl

[24] F. Golse - L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004), 81-161. | DOI | MR | Zbl

[25] F. Golse - L. Saint-Raymond, The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials, J. Math. Pures et Appl., 91 (2009), 508-552. | DOI | MR | Zbl

[26] H. Grad, Asymptotic theory of the Boltzmann equation II, 1963 Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Vol. I, pp. 26-59. | MR

[27] E. Grenier, On the derivation of homogeneous hydrostatic equations, M2AN Math. Modél. Anal. Num., 33 (1999), 965-970. | fulltext EuDML | DOI | MR | Zbl

[28] E. Grenier, Non dérivation des équations de Prandtl, Séminaire Equations aux Dérivées Partielles 1997-1998, Exp. No. XVIII, Ecole Polytech. Palaiseau 1998. | fulltext EuDML | MR

[29] J. Leray, Sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. | DOI | MR | Zbl

[30] D. Levermore - N. Masmoudi, From the Boltzmann Equation to an Incompressible Navier-Stokes-Fourier System, Archive for Rational Mech. and Anal., 196 (2010), 753-809. | DOI | MR | Zbl

[31] P.-L. Lions - N. Masmoudi, From Boltzmann Equation to the Navier-Stokes and Euler Equations I, Archive Rat. Mech. & Anal., 158 (2001), 173-193. | DOI | MR | Zbl

[32] P.-L. Lions - N. Masmoudi, From Boltzmann Equation to the Navier-Stokes and Euler Equations II, Archive Rat. Mech. & Anal., 158 (2001), 195-211. | DOI | MR | Zbl

[33] J. C. Maxwell, On the dynamical theory of gases, Philosophical Transactions, 157 (1866).

[34] T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Comm. Math. Phys., 61 (1978), 119-148. | MR | Zbl

[35] L. Saint-Raymond, Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal., 166 (2003), 47-80. | DOI | MR | Zbl

[36] M. Sammartino - R. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space. I. Existence for Euler and Prandtl equations, Commun. Math. Phys., 192 (1998), 433-461. | DOI | MR | Zbl

[37] Y. Sone, Kinetic Theory and Fluid Dynamics, Birkhäuser, Boston, 2002. | DOI | MR | Zbl

[38] Y. Sone, Molecular Gas Dynamics, Theory, Techniques, and Applications, Birkhäuser, Boston, 2007. | DOI | MR | Zbl

[39] Y. Sone - C. Bardos - F. Golse - H. Sugimoto, Asymptotic theory for the Boltzmann system, for a steady flow of a slightly rarefied gas with a finite Mach number: General theory, Eur. J. Mech. B Fluids, 19 (2000), 325-360. | DOI | MR | Zbl