Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2011_9_4_2_a0, author = {Golse, Fran\c{c}ois}, title = {From the {Boltzmann} {Equation} to {Hydrodynamic} {Equations} in thin {Layers}}, journal = {Bollettino della Unione matematica italiana}, pages = {163--186}, publisher = {mathdoc}, volume = {Ser. 9, 4}, number = {2}, year = {2011}, zbl = {1235.35208}, mrnumber = {2840601}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a0/} }
TY - JOUR AU - Golse, François TI - From the Boltzmann Equation to Hydrodynamic Equations in thin Layers JO - Bollettino della Unione matematica italiana PY - 2011 SP - 163 EP - 186 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a0/ LA - en ID - BUMI_2011_9_4_2_a0 ER -
Golse, François. From the Boltzmann Equation to Hydrodynamic Equations in thin Layers. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 2, pp. 163-186. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_2_a0/
[1] unpublished manuscript, 1998.
,[2] Topological methods in hydrodynamics, Springer, New York NY 1998. | MR | Zbl
- ,[3] Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles C. R. Acad. Sci., 309 (1989), 727-732. | MR | Zbl
- - ,[4] Fluid Dynamic Limits of the Boltzmann Equation I, J. Stat. Phys., 63 (1991), 323-344. | DOI | MR
- - ,[5] Fluid Dynamic Limits of Kinetic Equations II: Convergence Proofs for the Boltzmann Equation, Comm. Pure and Applied Math., 46 (1993), 667-753. | DOI | MR | Zbl
- - ,[6] Half-Space Problems for the Boltzmann Equation: A Survey, J. Stat. Phys., 124 (2006), 275-300. | DOI | MR | Zbl
- - ,[7] Kinetic equations: fluid dynamical limits and viscous heating, Bull. Inst. Math. Acad. Sin. (N.S.), 3 (2008), 1-49. | MR | Zbl
- - - ,[8] The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models and Methods in the Appl. Sci., 1 (1991), 235-257. | DOI | MR | Zbl
- ,[9] An introduction to fluid dynamics, Cambridge Univ. Press, 2000. | MR
,[10] Kinetic Equations and Asymptotic Theory, L. Desvillettes & B. Perthame ed., Editions scientifiques et médicales Elsevier, Paris, 2000. | MR
- - ,[11] Homogeneous hydrostatic flows with convex velocity profile, Nonlinearity, 12 (1999), 495-512. | DOI | MR | Zbl
,[12] Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math., 127 (2003), 585-595. | DOI | MR | Zbl
,[13] The fluid dynamic limit of the nonlinear Boltzmann equation, Comm. on Pure and Appl. Math., 33 (1980), 651-666. | DOI | MR | Zbl
,[14] Existence and singularities for the Prandtl boundary layer equations, Z. Angew. Math. Mech., 80 (2000), 733-744. | DOI | MR | Zbl
- ,[15] Bifurcation problems in fluid mechanics, Meccanica - J. Italian Assoc. Theoret. Appl. Mech., 5 (1970), 7-16. | MR | Zbl
,[16] The Boltzmann Equation and Its Applications, Springer-Verlag, New-York NY, 1988. | DOI | MR | Zbl
,[17] The Mathematical Theory of Dilute Gases, Springer Verlag, New York NY, 1994. | DOI | MR | Zbl
- - ,[18] The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179. | DOI | MR | Zbl
,[19] Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Comm. on Pure and Appl. Math., 42 (1990), 1189-1214. | DOI | MR | Zbl
- - ,[20] Uniqueness of solutions to hyperbolic conservation laws, Indiana U. Math. J., 28 (1979), 137-188. | DOI | MR | Zbl
,[21] On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. Math., 130 (1989), 321-366. | DOI | MR | Zbl
- ,[22] Blowup of solutions of the unsteady Prandtl equation, Comm. on Pure and Appl. Math., 50 (1997), 1287-1293. | DOI | MR | Zbl
, ,[23] The Stokes-Fourier and Acoustic Limits for the Boltzmann Equation, Comm. on Pure and Appl. Math., 55 (2002), 336-393. | DOI | MR | Zbl
- ,[24] The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004), 81-161. | DOI | MR | Zbl
- ,[25] The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials, J. Math. Pures et Appl., 91 (2009), 508-552. | DOI | MR | Zbl
- ,[26] Asymptotic theory of the Boltzmann equation II, 1963 Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Vol. I, pp. 26-59. | MR
,[27] On the derivation of homogeneous hydrostatic equations, M2AN Math. Modél. Anal. Num., 33 (1999), 965-970. | fulltext EuDML | DOI | MR | Zbl
,[28] Non dérivation des équations de Prandtl, Séminaire Equations aux Dérivées Partielles 1997-1998, Exp. No. XVIII, Ecole Polytech. Palaiseau 1998. | fulltext EuDML | MR
,[29] Sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. | DOI | MR | Zbl
,[30] From the Boltzmann Equation to an Incompressible Navier-Stokes-Fourier System, Archive for Rational Mech. and Anal., 196 (2010), 753-809. | DOI | MR | Zbl
- ,[31] From Boltzmann Equation to the Navier-Stokes and Euler Equations I, Archive Rat. Mech. & Anal., 158 (2001), 173-193. | DOI | MR | Zbl
- ,[32] From Boltzmann Equation to the Navier-Stokes and Euler Equations II, Archive Rat. Mech. & Anal., 158 (2001), 195-211. | DOI | MR | Zbl
- ,[33] On the dynamical theory of gases, Philosophical Transactions, 157 (1866).
,[34] Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Comm. Math. Phys., 61 (1978), 119-148. | MR | Zbl
,[35] Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal., 166 (2003), 47-80. | DOI | MR | Zbl
,[36] Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space. I. Existence for Euler and Prandtl equations, Commun. Math. Phys., 192 (1998), 433-461. | DOI | MR | Zbl
- ,[37] Kinetic Theory and Fluid Dynamics, Birkhäuser, Boston, 2002. | DOI | MR | Zbl
,[38] Molecular Gas Dynamics, Theory, Techniques, and Applications, Birkhäuser, Boston, 2007. | DOI | MR | Zbl
,[39] Asymptotic theory for the Boltzmann system, for a steady flow of a slightly rarefied gas with a finite Mach number: General theory, Eur. J. Mech. B Fluids, 19 (2000), 325-360. | DOI | MR | Zbl
- - - ,