Endpoint and Intermediate Potential Estimates for Nonlinear Equations
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 1, pp. 149-157.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We describe a few results obtained in [10], concerning the possibility of estimating solutions of quasilinear elliptic equations via nonlinear potentials.
@article{BUMI_2011_9_4_1_a8,
     author = {Kuusi, Tuomo and Mingione, Giuseppe},
     title = {Endpoint and {Intermediate} {Potential} {Estimates} for {Nonlinear} {Equations}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {149--157},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {1},
     year = {2011},
     zbl = {1235.35132},
     mrnumber = {2797471},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a8/}
}
TY  - JOUR
AU  - Kuusi, Tuomo
AU  - Mingione, Giuseppe
TI  - Endpoint and Intermediate Potential Estimates for Nonlinear Equations
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 149
EP  - 157
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a8/
LA  - en
ID  - BUMI_2011_9_4_1_a8
ER  - 
%0 Journal Article
%A Kuusi, Tuomo
%A Mingione, Giuseppe
%T Endpoint and Intermediate Potential Estimates for Nonlinear Equations
%J Bollettino della Unione matematica italiana
%D 2011
%P 149-157
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a8/
%G en
%F BUMI_2011_9_4_1_a8
Kuusi, Tuomo; Mingione, Giuseppe. Endpoint and Intermediate Potential Estimates for Nonlinear Equations. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 1, pp. 149-157. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a8/

[1] R. A. Adams - J. J. F. Fournier, Sobolev Spaces. Second edition, Pure and Appl. Math., 140, Elsevier/Academic Press, Amsterdam, 2003. | MR

[2] L. Boccardo - T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. PDE, 17 (1992), 641-655. | DOI | MR | Zbl

[3] R. A. De Vore - R. C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 47, no. 293 (1984). | DOI | MR | Zbl

[4] F. Duzaar - G. Mingione, Gradient estimates via nonlinear potentials, Amer. J. Math., to appear. | DOI | MR | Zbl

[5] F. Duzaar - G. Mingione, Gradient estimates via linear and nonlinear potentials, J. Funct. Anal., 259 (2010), 2961-2998. | DOI | MR | Zbl

[6] F. Duzaar - G. Mingione, Local Lipschitz regularity for degenerate elliptic systems, Ann. Inst. H. Poincaré Anal. Non Linèaire, 27 (2010), 1361-1396. | DOI | MR | Zbl

[7] T. Kilpeläinen - J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161. | DOI | MR

[8] J. Kristensen - G. Mingione, The singular set of minima of integral functionals, Arch. Ration. Mech. Anal., 180 (2006), 331-398. | DOI | MR | Zbl

[9] J. Kristensen - G. Mingione, Boundary regularity in variational problems, Arch. Rational Mech. Anal., 198 (2010), 369-455. | DOI | MR | Zbl

[10] T. Kuusi - G. Mingione, Universal potential estimates, Preprint 2010. | DOI | MR

[11] J. J. Manfredi, Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations, Ph. D. Thesis, University of Washington, St. Louis.

[12] G. Mingione, Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var. PDE, 18 (2003), 373-400. | DOI | MR | Zbl

[13] G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Scu. Norm. Sup. Pisa Cl. Sci. (V), 6 (2007), 195-261. | fulltext EuDML | MR | Zbl

[14] G. Mingione, Gradient estimates below the duality exponent, Math. Ann., 346 (2010), 571-627. | DOI | MR | Zbl

[15] G. Mingione, Gradient potential estimates, J. European Math. Soc., 13 (2011), 459-486. | fulltext EuDML | DOI | MR | Zbl

[16] G. Mingione, Nonlinear aspects of Calderón-Zygmund theory, Jahresbericht der DMV, 112 (2010), 159-191. | DOI | MR | Zbl

[17] N. S. Trudinger - X. J. Wang, On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math., 124 (2002), 369-410. | MR | Zbl

[18] N. S. Trudinger - X. J. Wang, Quasilinear elliptic equations with signed measure data, Disc. Cont. Dyn. Systems, 124 (2002), 369-410. | DOI | MR