Groups with Normality Conditions for Non-Periodic Subgroups
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 1, pp. 109-121.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The structure of (non-periodic) groups in which all non-periodic subgroups have a prescribed property is investigated. Among other choices, we consider properties generalizing normality, like subnormality, permutability and pronormality. Moreover, non-periodic groups whose proper non-periodic subgroups belong to a given group class are studied.
@article{BUMI_2011_9_4_1_a5,
     author = {De Falco, Maria and de Giovanni, Francesco and Musella, Carmela},
     title = {Groups with {Normality} {Conditions} for {Non-Periodic} {Subgroups}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {1},
     year = {2011},
     zbl = {1238.20043},
     mrnumber = {2797468},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a5/}
}
TY  - JOUR
AU  - De Falco, Maria
AU  - de Giovanni, Francesco
AU  - Musella, Carmela
TI  - Groups with Normality Conditions for Non-Periodic Subgroups
JO  - Bollettino della Unione matematica italiana
PY  - 2011
SP  - 109
EP  - 121
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a5/
LA  - en
ID  - BUMI_2011_9_4_1_a5
ER  - 
%0 Journal Article
%A De Falco, Maria
%A de Giovanni, Francesco
%A Musella, Carmela
%T Groups with Normality Conditions for Non-Periodic Subgroups
%J Bollettino della Unione matematica italiana
%D 2011
%P 109-121
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a5/
%G en
%F BUMI_2011_9_4_1_a5
De Falco, Maria; de Giovanni, Francesco; Musella, Carmela. Groups with Normality Conditions for Non-Periodic Subgroups. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 1, pp. 109-121. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a5/

[1] R. Baer, Überauflösbare Gruppen, Abh. Math. Sem. Univ. Hamburg, 23 (1957), 11-28. | DOI | MR

[2] M. De Falco, Groups with many nearly normal subgroups, Boll. Un. Mat. Ital., 4B (2001), 531-540. | fulltext bdim | fulltext EuDML | MR | Zbl

[3] M. De Falco - F. De Giovanni - C. Musella, Groups whose finite homomorphic images are metahamiltonian, Comm. Algebra, 37 (2009), 2468-2476. | DOI | MR | Zbl

[4] M. De Falco - C. Musella, Groups with many subgroups having modular subgroup lattice, Ricerche Mat., 51 (2002), 241-247. | MR | Zbl

[5] K. Doerk, Minimal nicht überauflösbare, endliche Gruppen, Math. Z., 91 (1966), 198-205. | fulltext EuDML | DOI | MR

[6] F. De Giovanni - G. Vincenzi, Some topics in the theory of pronormal subgroups of groups, Quaderni Mat., 8 (2001), 175-202. | MR | Zbl

[7] H. Heineken - I. J. Mohamed, A group with trivial centre satisfying the normalizer condition, J. Algebra, 10 (1968), 368-376. | DOI | MR | Zbl

[8] L. A. Kurdachenko - S. S. Levishchenko - N. N. Semko, Groups with almost normal infinite subgroups, Soviet Math. (izv. VUZ), 27 (1983), 73-81. | MR | Zbl

[9] N. F. Kuzennyi - N. N. Semko, Structure of solvable nonnilpotent metahamiltonian groups, Math. Notes, 34 (1983), 572-577. | MR | Zbl

[10] N. F. Kuzennyi - I. Y. Subbotin, Groups in which all subgroups are pronormal, Ukrain. Math. J., 39 (1987), 251-254. | MR | Zbl

[11] W. Moèhres, Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind, Arch. Math. (Basel), 54 (1990), 232-235. | DOI | MR

[12] C. Musella, Polycyclic groups with modular finite homomorphic images, Arch. Math. (Basel), 76 (2001), 161-165. | DOI | MR | Zbl

[13] B. H. Neumann, Groups with finite classes of conjugate subgroups, Math. Z., 63 (1955), 76-96. | fulltext EuDML | DOI | MR | Zbl

[14] J. Otal - J. M. Peña, Minimal non-CC-groups, Comm. Algebra, 16 (1988), 1231- 1242. | DOI | MR | Zbl

[15] D. J. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc., 60 (1964), 21-38. | MR | Zbl

[16] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin (1972). | MR | Zbl

[17] D. J. S. Robinson, Groups whose homomorphic images have a transitive normality relation, Trans. Amer. Math. Soc., 176 (1973), 181-213. | DOI | MR | Zbl

[18] G. M. Romalis - N. F. Sesekin, Metahamiltonian groups, Ural. Gos. Univ. Mat. Zap., 5 (1966), 101-106. | MR

[19] G. M. Romalis - N. F. Sesekin, Metahamiltonian groups II, Ural. Gos. Univ. Mat. Zap., 6 (1968), 52-58. | MR | Zbl

[20] G. M. Romalis - N. F. Sesekin, Metahamiltonian groups III, Ural. Gos. Univ. Mat. Zap., 7 (1969/70), 195-199. | MR | Zbl

[21] R. Schmidt, Subgroup Lattices of Groups, de Gruyter, Berlin (1994). | DOI | MR

[22] H. Smith, Groups with few non-nilpotent subgroups, Glasgow Math. J., 39 (1997), 141-151. | DOI | MR | Zbl

[23] H. Smith - J. Wiegold, Locally graded groups with all subgroups normal-by-finite, J. Austral. Math. Soc. Ser. A, 60 (1996), 222-227. | MR | Zbl

[24] M. J. Tomkinson, FC-groups, Pitman, Boston (1984). | MR