A Characterization of a Modulus of Smoothness in Multidimensional Setting
Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 1, pp. 79-108
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
A classical result of approximation theory states that $\lim_{\delta \to 0} \omega(f, \delta) = 0$, where $\omega$ is the modulus of smoothness of $f$ defined by means of the variation functional, if and only if $f$ is absolutely continuous. Such theorem is crucial in order to obtain results about convergence and order of approximation for linear and non-linear integral operators in BV-spaces. It was an open problem to extend the above result to the setting of $\varphi$-variation in the multidimensional frame. In this paper, working with a concept of multidimensional W-variation introduced in [3], we prove that an analogous characterization holds for the multidimensional $\varphi$-modulus of smoothness.
@article{BUMI_2011_9_4_1_a4,
author = {Angeloni, Laura},
title = {A {Characterization} of a {Modulus} of {Smoothness} in {Multidimensional} {Setting}},
journal = {Bollettino della Unione matematica italiana},
pages = {79--108},
year = {2011},
volume = {Ser. 9, 4},
number = {1},
zbl = {1237.26011},
mrnumber = {2797467},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a4/}
}
Angeloni, Laura. A Characterization of a Modulus of Smoothness in Multidimensional Setting. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 1, pp. 79-108. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a4/