Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2011_9_4_1_a2, author = {Dolera, Emanuele}, title = {On the {Computation} of the {Spectrum} of the {Linearized} {Boltzmann} {Collision} {Operator} for {Maxwellian} {Molecules}}, journal = {Bollettino della Unione matematica italiana}, pages = {47--68}, publisher = {mathdoc}, volume = {Ser. 9, 4}, number = {1}, year = {2011}, zbl = {1251.82045}, mrnumber = {2797465}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a2/} }
TY - JOUR AU - Dolera, Emanuele TI - On the Computation of the Spectrum of the Linearized Boltzmann Collision Operator for Maxwellian Molecules JO - Bollettino della Unione matematica italiana PY - 2011 SP - 47 EP - 68 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a2/ LA - en ID - BUMI_2011_9_4_1_a2 ER -
%0 Journal Article %A Dolera, Emanuele %T On the Computation of the Spectrum of the Linearized Boltzmann Collision Operator for Maxwellian Molecules %J Bollettino della Unione matematica italiana %D 2011 %P 47-68 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a2/ %G en %F BUMI_2011_9_4_1_a2
Dolera, Emanuele. On the Computation of the Spectrum of the Linearized Boltzmann Collision Operator for Maxwellian Molecules. Bollettino della Unione matematica italiana, Série 9, Tome 4 (2011) no. 1, pp. 47-68. http://geodesic.mathdoc.fr/item/BUMI_2011_9_4_1_a2/
[1] The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. Mathematical Physics Reviews, 7 (1988), 111-233. | MR | Zbl
,[2] Fast and slow convergence to equilibrium for Maxwellian molecules via Wild Sums. J. Stat. Phys., 112 (2003), 59-134. | DOI | MR | Zbl
- ,[3] Mathematical Methods in Kinetic Theory. Plenum Press, New York (1969). | MR | Zbl
,[4] The Boltzmann Equation and its Applications. Springer-Verlag, New York (1988). | DOI | MR | Zbl
,[5] $L^2$-Stability near equilibrium of the solution of the homogeneous Boltzmann equation in the case of Maxwellian molecules. Meccanica, 23 (1988), 15-18. | DOI | MR | Zbl
- - ,[6] The Mathematical Theory of Nonuniform Gases. 1st ed. Cambridge University Press, Cambridge (1939). | MR | Zbl
- ,[7] Higher trascendental functions. McGraw Hill, New York (1953).
- - - ,[8] Asymptotic theory of the Boltzmann equation, II. Rarefied Gas Dynamics, 3rd Symposium (1962), 26-59. | MR
,[9] Begründung der kinetischen Gastheorie. Math. Ann., 72 (1912), 562-577. | fulltext EuDML | DOI | MR
,[10] Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Comm. Math. Phys., 261 (2006), 629-672. | DOI | MR | Zbl
,[11] Quantitative linearized study of the Boltzmann collision operator and applications. Commun. Math. Sci., 5, suppl. 1 (2007), 73-86. | DOI | MR | Zbl
,[12] Integrals and Series. Vol. 4: Laplace Transforms. Gordon and Breach Science Publishers, Amsterdam (1998). | MR
- - ,[13] Orthogonal Functions. Pure and Applied Mathematics. Vol. IX (1959). Interscience Publishers, New York. Reprinted by Dover Publications (1991). | MR
,[14] Fundamentals of Maxwell's Kinetic Theory of a Simple Monoatomic Gas. Academic Press, New York (1980). | MR
- ,[15] A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics, Vol. I (2002), 71-305. (S. Friedlander and D. Serre eds.). North-Holland, Amsterdam. | DOI | MR | Zbl
,[16] On the propagation of sound in monoatomic gases. Univ. of Michigan Press. Ann Arbor, Michigan. Reprinted in 1970 in Studies in Statistical Mechanics. Vol. V (1952). Edited by J. L. Lebowitz - E. Montroll, North-Holland.
- ,[17] A Treatise on the Thery of Bessel Functions. 2nd ed. Cambridge University Press, London (1944). | MR
,