Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2010_9_3_3_a9, author = {Visintin, Augusto}, title = {Scale-Transformations of {Maximal} {Monotone} {Relations} in {View} of {Homogenization}}, journal = {Bollettino della Unione matematica italiana}, pages = {591--601}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {3}, year = {2010}, zbl = {0770.35005}, mrnumber = {2742783}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a9/} }
TY - JOUR AU - Visintin, Augusto TI - Scale-Transformations of Maximal Monotone Relations in View of Homogenization JO - Bollettino della Unione matematica italiana PY - 2010 SP - 591 EP - 601 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a9/ LA - en ID - BUMI_2010_9_3_3_a9 ER -
Visintin, Augusto. Scale-Transformations of Maximal Monotone Relations in View of Homogenization. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 591-601. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a9/
[1] Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal., 23 (1992), 1482-1518. | DOI | MR | Zbl
,[2] Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin 2010. | DOI | MR | Zbl
,[3] Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam 1973. | MR | Zbl
,[4] Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps, and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974. | MR | Zbl
- ,[5] An Introduction to $\Gamma$-Convergence. Birkhäuser, Boston 1993. | DOI | MR | Zbl
,[6] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (8) (1975), 842-850. | MR
- ,[7] Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris 1974. | MR
- ,[8] Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65; Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. | MR | Zbl
,[9] Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl., 117 (1978), 139-152. | DOI | MR | Zbl
,[10] Monotone operators representable by l.s.c. convex functions. Set-Valued Anal., 13 (2005), 21-46. | DOI | MR | Zbl
- ,[11] Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. | MR | Zbl
,[12] A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal., 20 (1989), 608-623. | DOI | MR | Zbl
,[13] Convex Analysis. Princeton University Press, Princeton 1969. | MR
,[14] Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Continuum Mech. Thermodyn., 18 (2006), 223-252. | DOI | MR | Zbl
,[15] Homogenization of the nonlinear Maxwell model of visco-elasticity and of the Prandtl-Reuss model of elasto-plasticity. Royal Soc. Edinburgh Proc. A, 138 (2008), 1-39. | DOI | MR
,[16] Homogenization of nonlinear visco-elastic composites. J. Math. Pures Appl., 89 (2008), 477-504. | DOI | MR | Zbl
,[17] Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. | MR | Zbl
,[18] Scale-integration and scale-disintegration in nonlinear homogenization. Calc. Var. Partial Differential Equations, 36 (2009), 565-590. | DOI | MR | Zbl
,[19] Scale-transformations in the homogenization of nonlinear magnetic processes. Archive Rat. Mech. Anal. (in press). | DOI | MR | Zbl
,[20] Homogenization of processes in nonlinear visco-elastic composites. Ann. Scuola Norm. Sup. Pisa (in press). | MR | Zbl
,[21] A minimization principle for monotone equations. (submitted).
,[22] Scale-transformations and homogenization of maximal monotone relations, with applications. (forthcoming). | MR | Zbl
,[23] Homogenization of a parabolic model of ferromagnetism. (forthcoming). | DOI | MR | Zbl
,[24] Nonlinear Functional Analysis and its Applications. Vol. II/B: Nonlinear Monotone Operators. Springer, New York 1990. | DOI | MR | Zbl
,