Scale-Transformations of Maximal Monotone Relations in View of Homogenization
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 591-601.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

On the basis of Fitzpatrick's variational formulation of maximal monotone relations, and of Nguetseng's two-scale approach to homogenization, scale-transformations have recently been introduced and used for the periodic homogenization of quasilinear P.D.E.s. This note illustrates some basic results of this method.
@article{BUMI_2010_9_3_3_a9,
     author = {Visintin, Augusto},
     title = {Scale-Transformations of {Maximal} {Monotone} {Relations} in {View} of {Homogenization}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {591--601},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {0770.35005},
     mrnumber = {2742783},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a9/}
}
TY  - JOUR
AU  - Visintin, Augusto
TI  - Scale-Transformations of Maximal Monotone Relations in View of Homogenization
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 591
EP  - 601
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a9/
LA  - en
ID  - BUMI_2010_9_3_3_a9
ER  - 
%0 Journal Article
%A Visintin, Augusto
%T Scale-Transformations of Maximal Monotone Relations in View of Homogenization
%J Bollettino della Unione matematica italiana
%D 2010
%P 591-601
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a9/
%G en
%F BUMI_2010_9_3_3_a9
Visintin, Augusto. Scale-Transformations of Maximal Monotone Relations in View of Homogenization. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 591-601. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a9/

[1] G. Allaire, Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal., 23 (1992), 1482-1518. | DOI | MR | Zbl

[2] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin 2010. | DOI | MR | Zbl

[3] H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam 1973. | MR | Zbl

[4] H. Brezis - I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps, and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974. | MR | Zbl

[5] G. Dal Maso, An Introduction to $\Gamma$-Convergence. Birkhäuser, Boston 1993. | DOI | MR | Zbl

[6] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (8) (1975), 842-850. | MR

[7] I. Ekeland - R. Temam, Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris 1974. | MR

[8] S. Fitzpatrick, Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65; Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. | MR | Zbl

[9] P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl., 117 (1978), 139-152. | DOI | MR | Zbl

[10] J.-E. Martinez-Legaz - B. F. Svaiter, Monotone operators representable by l.s.c. convex functions. Set-Valued Anal., 13 (2005), 21-46. | DOI | MR | Zbl

[11] B. Nayroles, Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. | MR | Zbl

[12] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal., 20 (1989), 608-623. | DOI | MR | Zbl

[13] R. T. Rockafellar, Convex Analysis. Princeton University Press, Princeton 1969. | MR

[14] A. Visintin, Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Continuum Mech. Thermodyn., 18 (2006), 223-252. | DOI | MR | Zbl

[15] A. Visintin, Homogenization of the nonlinear Maxwell model of visco-elasticity and of the Prandtl-Reuss model of elasto-plasticity. Royal Soc. Edinburgh Proc. A, 138 (2008), 1-39. | DOI | MR

[16] A. Visintin, Homogenization of nonlinear visco-elastic composites. J. Math. Pures Appl., 89 (2008), 477-504. | DOI | MR | Zbl

[17] A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. | MR | Zbl

[18] A. Visintin, Scale-integration and scale-disintegration in nonlinear homogenization. Calc. Var. Partial Differential Equations, 36 (2009), 565-590. | DOI | MR | Zbl

[19] A. Visintin, Scale-transformations in the homogenization of nonlinear magnetic processes. Archive Rat. Mech. Anal. (in press). | DOI | MR | Zbl

[20] A. Visintin, Homogenization of processes in nonlinear visco-elastic composites. Ann. Scuola Norm. Sup. Pisa (in press). | MR | Zbl

[21] A. Visintin, A minimization principle for monotone equations. (submitted).

[22] A. Visintin, Scale-transformations and homogenization of maximal monotone relations, with applications. (forthcoming). | MR | Zbl

[23] A. Visintin, Homogenization of a parabolic model of ferromagnetism. (forthcoming). | DOI | MR | Zbl

[24] E. Zeidler, Nonlinear Functional Analysis and its Applications. Vol. II/B: Nonlinear Monotone Operators. Springer, New York 1990. | DOI | MR | Zbl