Some Remarks on the Equivalence Between Metric Formulations of Gradient Flows
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 583-588.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The aim of this short note is to prove the equivalence of certain definitions of solutions to an evolution variational inequality in metric spaces, introduced by Ambrosio, Gigli, Savaré, and Daneri, Savaré.
@article{BUMI_2010_9_3_3_a8,
     author = {Cl\'ement, P. and Desch, W.},
     title = {Some {Remarks} on the {Equivalence} {Between} {Metric} {Formulations} of {Gradient} {Flows}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {583--588},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {1217.49009},
     mrnumber = {2742782},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a8/}
}
TY  - JOUR
AU  - Clément, P.
AU  - Desch, W.
TI  - Some Remarks on the Equivalence Between Metric Formulations of Gradient Flows
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 583
EP  - 588
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a8/
LA  - en
ID  - BUMI_2010_9_3_3_a8
ER  - 
%0 Journal Article
%A Clément, P.
%A Desch, W.
%T Some Remarks on the Equivalence Between Metric Formulations of Gradient Flows
%J Bollettino della Unione matematica italiana
%D 2010
%P 583-588
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a8/
%G en
%F BUMI_2010_9_3_3_a8
Clément, P.; Desch, W. Some Remarks on the Equivalence Between Metric Formulations of Gradient Flows. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 583-588. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a8/

[1] L. Ambrosio - N. Gigli - G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel 2005. | MR

[2] P. Bénilan, Solutions intégrales d'équations d'évolution dans un espace de Banach, C. R. Acad. Sci. Paris Sér., A-B 274 (1972), A47-A50. | MR | Zbl

[3] Ph. Clément, Introduction to Gradient Flows in Metric Spaces (II), https://igk.math.uni-bielefeld.de/study-materials/notes-clement-part2.pdf.

[4] S. Daneri - G. Savaré , Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40 (2008), 1104-1122. | DOI | MR | Zbl