The Impact of the Mountain Pass Theory in Nonlinear Analysis: a Mathematical Survey
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 543-582.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We provide a survey on the mountain pass theory, viewed as a central tool in the modern nonlinear analysis. The abstract results are illustrated with relevant applications to nonlinear partial differential equations.
@article{BUMI_2010_9_3_3_a7,
     author = {Pucci, Patrizia and R\u{a}dulescu, Vicenṭiu},
     title = {The {Impact} of the {Mountain} {Pass} {Theory} in {Nonlinear} {Analysis:} a {Mathematical} {Survey}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {543--582},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {1225.49004},
     mrnumber = {2742781},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a7/}
}
TY  - JOUR
AU  - Pucci, Patrizia
AU  - Rădulescu, Vicenṭiu
TI  - The Impact of the Mountain Pass Theory in Nonlinear Analysis: a Mathematical Survey
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 543
EP  - 582
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a7/
LA  - en
ID  - BUMI_2010_9_3_3_a7
ER  - 
%0 Journal Article
%A Pucci, Patrizia
%A Rădulescu, Vicenṭiu
%T The Impact of the Mountain Pass Theory in Nonlinear Analysis: a Mathematical Survey
%J Bollettino della Unione matematica italiana
%D 2010
%P 543-582
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a7/
%G en
%F BUMI_2010_9_3_3_a7
Pucci, Patrizia; Rădulescu, Vicenṭiu. The Impact of the Mountain Pass Theory in Nonlinear Analysis: a Mathematical Survey. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 543-582. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a7/

[1] A. Ambrosetti - A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics, vol. 104, Cambridge University Press, Cambridge, 2007. | DOI | MR | Zbl

[2] A. Ambrosetti - P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. | MR | Zbl

[3] H. Brezis - F. Browder, Partial differential equations in the 20th century, Adv. Math., 135 (1998), 76-144. | DOI | MR | Zbl

[4] H. Brezis - J.-M. Coron - L. Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of Rabinowitz, Comm. Pure Appl. Math., 33 (1980), 667-689. | DOI | MR | Zbl

[5] H. Brezis - L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44 (1991), 939-964. | DOI | MR | Zbl

[6] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332-336. | MR

[7] K. C. Chang, Variational methods for non-differentiable functionals and applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129. | DOI | MR | Zbl

[8] F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975), 247-262. | DOI | MR | Zbl

[9] F. H. Clarke, Solution périodique des équations hamiltoniennes, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A951-A952. | MR | Zbl

[10] F. H. Clarke, Generalized gradients of Lipschitz functionals, Adv. in Math., 40 (1981), 52-67. | DOI | MR | Zbl

[11] J. Dugundji, Topology, Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1966. | MR

[12] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. | DOI | MR | Zbl

[13] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474. | DOI | MR | Zbl

[14] R. Emden, Die GaskuÈgeln, Teubner, Leipzig, 1907.

[15] R. H. Fowler, Further studies of Emden and similar differential equations, Quart. J. Math., 2 (1931), 259-288. | Zbl

[16] M. Ghergu - V. Rădulescu, Singular Elliptic Problems. Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and Its Applications, vol. 37, Oxford University Press, 2008. | MR

[17] N. Ghoussoub - D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 6 (1989), 321-330. | fulltext EuDML | MR | Zbl

[18] Y. Jabri, The Mountain Pass Theorem. Variants, Generalizations and Some Applications, Encyclopedia of Mathematics and its Applications, vol. 95, Cambridge University Press, Cambridge, 2003. | DOI | MR | Zbl

[19] J. L. Kazdan - F. W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geom., 10 (1975), 113-134. | MR | Zbl

[20] J. L. Kazdan - F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597. | DOI | MR | Zbl

[21] A. Kristály - V. Rădulescu - Cs. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, vol. 136, Cambridge University Press, Cambridge, 2010. | DOI | MR

[22] G. Lebourg, Valeur moyenne pour gradient generalisé, C. R. Acad. Sci. Paris, 281 (1975), 795-797. | MR | Zbl

[23] S. Li, Some aspects of nonlinear operators and critical point theory, Functional analysis in China (Li, Bingren, Eds.), Kluwer Academic Publishers, Dordrecht, 1996, 132-144. | MR | Zbl

[24] J. Mawhin - M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, vol. 74, Springer, New York, 1989. | DOI | MR | Zbl

[25] R. Palais, Ljusternik-Schnirelmann theory on Banach manifolds, Topology, 5 (1966), 115-132. | DOI | MR | Zbl

[26] R. Palais - S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc., 70 (1964), 165-171. | DOI | MR

[27] S. Pohozaev, On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39. | MR

[28] P. Pucci - J. Serrin, Extensions of the mountain pass theorem, J. Funct. Anal., 59 (1984), 185-210. | DOI | MR | Zbl

[29] P. Pucci - J. Serrin, A mountain pass theorem, J. Differential Equations, 60 (1985), 142-149. | DOI | MR | Zbl

[30] P. Pucci - J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703. | DOI | MR | Zbl

[31] P. Pucci - J. Serrin, The structure of the critical set in the mountain pass theorem, Trans. Amer. Math. Soc., 299 (1987), 115-132. | DOI | MR | Zbl

[32] P. Pucci - J. Serrin, A note on the strong maximum principle for elliptic differential inequalities, J. Math. Pures Appl., 79 (2000), 57-71. | DOI | MR | Zbl

[33] P. Pucci - J. Serrin, The strong maximum principle revisited, J. Differential Equations, 196 (2004), 1-66; Erratum, J. Differential Equations, 207 (2004), 226-227. | DOI | MR | Zbl

[34] P. Pucci - J. Serrin, On the strong maximum and compact support principles and some applications, in Handbook of Differential Equations - Stationary Partial Differential Equations (M. Chipot, Ed.), Elsevier, Amsterdam, Vol. 4 (2007), 355-483. | MR | Zbl

[35] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conference Series in Mathematics, 65, 1986 American Mathematical Society, Providence, RI. | DOI | MR

[36] V. Rădulescu, Mountain pass theorems for non-differentiable functions and applications, Proc. Japan Acad., 69A (1993), 193-198. | MR

[37] F. Rellich, Darstellung der Eigenwerte von $\Delta u + \lambda u = 0$ durch ein Randintegral, Math. Z., 46 (1940), 635-636. | fulltext EuDML | DOI | MR

[38] W. Rudin, Functional Analysis, Mc Graw-Hill, 1973. | MR

[39] M. Schechter, Minimax Systems and Critical Point Theory, Birkhäuser, Boston, 2009. | DOI | MR | Zbl

[40] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964), 247-302. | DOI | MR | Zbl

[41] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990. | DOI | MR

[42] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser, Boston, 1996. | DOI | MR

[43] W. Zou, Sign-changing Critical Point Theory, Springer, New York, 2008. | MR | Zbl