Remarks About Morphisms on an Algebraic Curve
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 505-519.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In a previous paper we described the collection of homological equivalence relations on a curve of genus $\ge 2$ as the set of integral solutions of certain algebraic equations. In the present paper we improve one argument of the previous paper, and we study the equations more closely for a curve of genus 2.
@article{BUMI_2010_9_3_3_a5,
     author = {Guerra, Lucio},
     title = {Remarks {About} {Morphisms} on an {Algebraic} {Curve}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {505--519},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {1215.14038},
     mrnumber = {2742779},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a5/}
}
TY  - JOUR
AU  - Guerra, Lucio
TI  - Remarks About Morphisms on an Algebraic Curve
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 505
EP  - 519
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a5/
LA  - en
ID  - BUMI_2010_9_3_3_a5
ER  - 
%0 Journal Article
%A Guerra, Lucio
%T Remarks About Morphisms on an Algebraic Curve
%J Bollettino della Unione matematica italiana
%D 2010
%P 505-519
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a5/
%G en
%F BUMI_2010_9_3_3_a5
Guerra, Lucio. Remarks About Morphisms on an Algebraic Curve. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 505-519. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a5/

[1] C. Birkenhake - H. Lange, Complex Abelian Varieties, second edition. Springer-Verlag, Berlin, 2004. | DOI | MR | Zbl

[2] L. Dickson, Introduction to the Theory of Numbers. Dover Publications, New York, 1957. | Zbl

[3] L. Guerra, Morphisms on an algebraic curve and divisor classes in the self product. Boll. Unione Mat. Ital. Sez. B (8) 10, no. 3 (2007), 715-725. | fulltext bdim | fulltext EuDML | MR | Zbl

[4] T. Hayashida - M. Nishi, Existence of curves of genus two on a product of two elliptic curves. J. Math. Soc. Japan, 17 (1965), 1-16. | DOI | MR | Zbl

[5] E. Kani, Bounds on the number of nonrational subfields of a function field. Invent. Math., 85 , no. 1 (1986), 185-198. | fulltext EuDML | DOI | MR | Zbl

[6] R. Kuhn, Curves of genus 2 with split Jacobian. Trans. Amer. Math. Soc., 307 , no. 1 (1988), 41-49. | DOI | MR | Zbl

[7] T. Kuusalo - M. Näätänen, Geometric uniformization in genus 2. Ann. Acad. Sci. Fenn. Ser. A I Math., 20, no. 2 (1995), 401-418. | fulltext EuDML | MR | Zbl