Central Elements in Pseudo-D-Lattices and Hahn Decomposition Theorem
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 447-470.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove a Hahn decomposition theorem for modular measures on pseudo-D-lattices. As a consequence, we obtain a Uhl type theorem and a Kadets type theorem concerning compactness and convexity of the closure of the range.
@article{BUMI_2010_9_3_3_a2,
     author = {Avallone, Anna and Barbieri, Giuseppina and Vitolo, Paolo},
     title = {Central {Elements} in {Pseudo-D-Lattices} and {Hahn} {Decomposition} {Theorem}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {447--470},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {1229.03053},
     mrnumber = {2742776},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a2/}
}
TY  - JOUR
AU  - Avallone, Anna
AU  - Barbieri, Giuseppina
AU  - Vitolo, Paolo
TI  - Central Elements in Pseudo-D-Lattices and Hahn Decomposition Theorem
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 447
EP  - 470
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a2/
LA  - en
ID  - BUMI_2010_9_3_3_a2
ER  - 
%0 Journal Article
%A Avallone, Anna
%A Barbieri, Giuseppina
%A Vitolo, Paolo
%T Central Elements in Pseudo-D-Lattices and Hahn Decomposition Theorem
%J Bollettino della Unione matematica italiana
%D 2010
%P 447-470
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a2/
%G en
%F BUMI_2010_9_3_3_a2
Avallone, Anna; Barbieri, Giuseppina; Vitolo, Paolo. Central Elements in Pseudo-D-Lattices and Hahn Decomposition Theorem. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 447-470. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a2/

[1] A. Avallone - G. Barbieri, Range of finitely additive fuzzy measures, Fuzzy Sets and Systems, 89 (2) (1997), 231-241. | DOI | MR | Zbl

[2] A. Avallone - G. Barbieri, Lyapunov measures on effect algebras, Comment. Math. Univ. Carolin., 44 (2003), 389-397. | fulltext EuDML | MR | Zbl

[3] A. Avallone - P. Vitolo, Pseudo-D-lattices and topologies generated by measures, Ital. J. Pure Appl. Math., To appear. | MR | Zbl

[4] A. Avallone - G. Barbieri - P. Vitolo, Hahn decomposition of modular measures and applications, Comment. Math. Prace Mat., 43 (2003), 149-168. | MR | Zbl

[5] G. Barbieri, Lyapunov's theorem for measures on D-posets, Internat. J. Theoret. Phys., 43 (2004), 1613-1623. | DOI | MR | Zbl

[6] M. K. Bennett - D. J. Foulis, Effect algebras and unsharp quantum logics. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday, Found. Phys., 24 (10) (1994), 1331-1352. | DOI | MR

[7] D. Butnariu - P. Klement, Triangular Norm-based Measures and Games with Fuzzy Coalitions, Kluwer Academic Publishers, Dordrecht, 1993. | DOI | MR | Zbl

[8] F. Chovanek - F. Kopka, D-posets, Math. Slovaca, 44 (1) (1994), 21-34. | fulltext EuDML | MR

[9] A. Dvurečenskij, Central elements and Cantor-Bernstein theorem for pseudo-effect algebras, Journal of the Australian Mathematical Society, 74 (2003), 121-143. | DOI | MR

[10] A. Dvurečenskij - PULMANNOVÁ, New trends in quantum structures, Kluwer Academic Publishers, Dordrecht; Ister Science, Bratislava, 2000. | DOI | MR

[11] A. Dvurečenskij - T. Vetterlein, Congruences and states on pseudoeffect algebras, Found. Phys. Letters, 14 (2001), 425-446. | DOI | MR

[12] L. G. Epstein - J. Zhang, Subjective probabilities on subjectively unambiguous events, Econometrica, 69 (2) (2001), 265-306. | DOI | MR | Zbl

[13] G. Georgescu - A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, Combinatorics, computability and logic (2001), 97-114. | MR | Zbl

[14] S. Pulmannová, Generalized Sasaki projections and Riesz ideals in pseudoeffect algebras, International Journal of Theoretical Physics, 42 (7) (2003), 1413-1423. | DOI | MR | Zbl

[15] V. M. Kadets, A remark on Lyapunov's theorem on a vector measure, Funct. Anal. Appl., 25 (4) (1991), 295-297. | DOI | MR | Zbl

[16] S. Yun - L. Yongming - C. Maoyin, Pseudo difference posets and pseudo Boolean D-posets, Internat. J. Theoret. Phys., 43 (12) (2004), 2447-2460. | DOI | MR | Zbl

[17] J. Uhl, The range of a vector-valued measure, Proc. Amer. Math. Soc., 23 (1969), 158-163. | DOI | MR | Zbl

[18] H. Weber, Uniform lattices. I. A generalization of topological Riesz spaces and topological Boolean rings, Ann. Mat. Pura Appl., 160 (4) (1991), 347-370. | DOI | MR | Zbl

[19] H. Weber, On modular functions, Funct. Approx. Comment. Math., 24 (1996), 35-52. | MR | Zbl

[20] H. Weber, Uniform lattices and modular functions, Atti Sem. Mat. Fis. Univ. Modena, 47 (1) (1999), 159-182. | MR | Zbl