Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 421-446.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Free energies, originally proposed for viscoelastic solids, together with their corresponding internal dissipations, are here considered under forms adapted to the case of rigid heat conductors with memory. The results related to the minimum free energy of the discrete spectrum model are then compared with some of the classical free energies of such conductors.
@article{BUMI_2010_9_3_3_a1,
     author = {Amendola, Giovambattista and Carillo, Sandra and Manes, Adele},
     title = {Classical {Free} {Energies} of a {Heat} {Conductor} with {Memory} and the {Minimum} {Free} {Energy} for its {Discrete} {Spectrum} {Model}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {421--446},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {2010},
     zbl = {1216.35150},
     mrnumber = {2742775},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a1/}
}
TY  - JOUR
AU  - Amendola, Giovambattista
AU  - Carillo, Sandra
AU  - Manes, Adele
TI  - Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 421
EP  - 446
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a1/
LA  - en
ID  - BUMI_2010_9_3_3_a1
ER  - 
%0 Journal Article
%A Amendola, Giovambattista
%A Carillo, Sandra
%A Manes, Adele
%T Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model
%J Bollettino della Unione matematica italiana
%D 2010
%P 421-446
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a1/
%G en
%F BUMI_2010_9_3_3_a1
Amendola, Giovambattista; Carillo, Sandra; Manes, Adele. Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 421-446. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a1/

[1] G. Amendola - C. A. Bosello - M. Fabrizio, Maximum recoverable work and pseudofree energies for a rigid heat conductor, Nonlinear Oscillations, 10 (1) (2007), 7-25. | DOI | MR | Zbl

[2] G. Amendola - C. A. Bosello - A. Manes, On free energies for a heat conductor with memory effects, to appear.

[3] G. Amendola - S. Carillo, Thermal work and minimum free energy in a heat conductor with memory, Quart. J. of Mech. and Appl. Math., 57 (3) (2004), 429-446. | DOI | MR | Zbl

[4] G. Amendola - M. Fabrizio - J. M. Golden, Free energies for a rigid heat conductor with memory, IMA J. Appl. Math. (2010). | DOI | MR | Zbl

[5] G. Amendola - A. Manes, Minimum free energy for a rigid heat conductor with memory and application to a discrete spectrum model, Boll. Un. Mat. Italiana, 8 (10B) (2007), 969-987. | fulltext bdim | fulltext EuDML | MR | Zbl

[6] G. Amendola - A. Manes - C. Vettori, Maximum recoverable work for a rigid heat conductor with memory, Acta Applicandae Mathematicae, 110, issue 3 (2010), 1011-1036. | DOI | MR | Zbl

[7] S. Breur - E. T. Onat, On the determination of free energy in linear viscoelasticity, Z. Angew. Math. Phys., 15 (1964), 184-191. | DOI | MR | Zbl

[8] C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948), 83-101. | MR

[9] S. Carillo, Some remarks on materials with memory: heat conduction and viscoelasticity, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 163-178. | DOI | MR | Zbl

[10] W. A. Day, Reversibility, recoverable work and free energy in linear viscoelasticity, Quart. J. Mech. and Appl. Math., 23 (1970), 1-15. | DOI | MR | Zbl

[11] L. Deseri - M. Fabrizio - J. M. Golden, The concept of a minimal state in viscoelasticity: new free energies and applications to PDEs, Arch. Rational Mech. Anal., 181 (1) (2006), 43-96. | DOI | MR | Zbl

[12] E. D. Dill, Simple materials with fading memory, In: Continuum Physics II., Academic, Berlin, 1972.

[13] M. Fabrizio - A. Morro, Mathematical problems in linear viscoelasticity, SIAM, Philadelphia, 1992. | DOI | MR | Zbl

[14] C. Giorgi - G. Gentili, Thermodynamic properties and stability for the heat flux equation with linear memory, Quart. Appl. Math., LI, 2 (1993), 343-362. | DOI | MR | Zbl

[15] J. M. Golden, Free energy in the frequency domain: the scalar case, Quart. Appl. Math., LVIII 1 (2000), 127-150. | DOI | MR | Zbl

[16] D. Graffi, Sull'espressione analitica di alcune grandezze termodinamiche nei materiali con memoria, Rend. Sem. Mat. Univ. Padova, 68 (1982), 17-29. | fulltext EuDML | Zbl

[17] D. Graffi - M. Fabrizio, Non unicità dell'energia libera per materiali viscoelastici, Atti Accad. Naz. Lincei, 83 (1990), 209-214. | fulltext EuDML

[18] M. E. Gurtin - A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126. | DOI | MR | Zbl

[19] N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, 1953. | MR

[20] V. Volterra, Theory of functional and of integral and integro-differential equations, Blackie Son Limited, London,1930. | MR | Zbl