Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 421-446
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Free energies, originally proposed for viscoelastic solids, together with their corresponding internal dissipations, are here considered under forms adapted to the case of rigid heat conductors with memory. The results related to the minimum free energy of the discrete spectrum model are then compared with some of the classical free energies of such conductors.
@article{BUMI_2010_9_3_3_a1,
author = {Amendola, Giovambattista and Carillo, Sandra and Manes, Adele},
title = {Classical {Free} {Energies} of a {Heat} {Conductor} with {Memory} and the {Minimum} {Free} {Energy} for its {Discrete} {Spectrum} {Model}},
journal = {Bollettino della Unione matematica italiana},
pages = {421--446},
year = {2010},
volume = {Ser. 9, 3},
number = {3},
zbl = {1216.35150},
mrnumber = {2742775},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a1/}
}
TY - JOUR AU - Amendola, Giovambattista AU - Carillo, Sandra AU - Manes, Adele TI - Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model JO - Bollettino della Unione matematica italiana PY - 2010 SP - 421 EP - 446 VL - 3 IS - 3 UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a1/ LA - en ID - BUMI_2010_9_3_3_a1 ER -
%0 Journal Article %A Amendola, Giovambattista %A Carillo, Sandra %A Manes, Adele %T Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model %J Bollettino della Unione matematica italiana %D 2010 %P 421-446 %V 3 %N 3 %U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a1/ %G en %F BUMI_2010_9_3_3_a1
Amendola, Giovambattista; Carillo, Sandra; Manes, Adele. Classical Free Energies of a Heat Conductor with Memory and the Minimum Free Energy for its Discrete Spectrum Model. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 3, pp. 421-446. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_3_a1/