On Rational Elliptic Surfaces with Mordell-Weil Group of Rank Five
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 363-379.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $E(K)$ be the Mordell-Weil group of a rational elliptic surface and let $r$ be its rank. In this note we classify all the rational elliptic surfaces with Mordell-Weil group of rank $r = 5$ over an algebraically closed field of arbitrary characteristic and using the theory of Mordell-Weil lattices, we find systems of generators for $E(K)$ in the coordinate-free situation.
@article{BUMI_2010_9_3_2_a7,
     author = {Fusi, Davide and Tironi, Andrea Luigi},
     title = {On {Rational} {Elliptic} {Surfaces} with {Mordell-Weil} {Group} of {Rank} {Five}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {363--379},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {2},
     year = {2010},
     zbl = {1200.14069},
     mrnumber = {2666364},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a7/}
}
TY  - JOUR
AU  - Fusi, Davide
AU  - Tironi, Andrea Luigi
TI  - On Rational Elliptic Surfaces with Mordell-Weil Group of Rank Five
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 363
EP  - 379
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a7/
LA  - en
ID  - BUMI_2010_9_3_2_a7
ER  - 
%0 Journal Article
%A Fusi, Davide
%A Tironi, Andrea Luigi
%T On Rational Elliptic Surfaces with Mordell-Weil Group of Rank Five
%J Bollettino della Unione matematica italiana
%D 2010
%P 363-379
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a7/
%G en
%F BUMI_2010_9_3_2_a7
Fusi, Davide; Tironi, Andrea Luigi. On Rational Elliptic Surfaces with Mordell-Weil Group of Rank Five. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 363-379. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a7/

[1] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 et 6, Hermann, Paris, 1968. | MR

[2] J. Conway - N. Sloane, Sphere packings, Lattices and Groups. Grund. Math. Wiss., 290 (Springer-Verlag, 1988). | DOI | MR | Zbl

[3] D. Fusi, Construction of linear pencils of cubic curves with Mordell-Weil rank six and seven. Comment. Math. Univ. St. Paul., 55, no. 2 (2006), 195-205. | MR | Zbl

[4] Ju. Manin, The Tate height of points on an Abelian variety, its invariant and applications. Ivz. Akad. Nauk SSSR Ser. mat., 28 (1964), 1363-1390; A.M.S. Transl. (2), 59 (1966), 82-110. | MR

[5] R. Miranda, The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica [Doctorate in Mathematical Research] ETS Editrice, Pisa, 1989. | MR | Zbl

[6] K. Oguiso - T. Shioda, The Mordell-Weil lattice of a rational elliptic surface. Comment. Math. Univ. St. Paul., 40, no. 1 (1991), 83-99. | MR | Zbl

[7] T. Shioda, On the Mordell-Weil Lattices. Comment. Math. Univ. St. Paul., 39, no. 2 (1990), 211-240. | MR | Zbl