On the Variational Inequality and Tykhonov Well-Posedness in Game Theory
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 337-348
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Consider a M-player game in strategic form $G = (X_{1},\cdots,X_{M},g_{1},\cdots,g_{M})$ where the set $X_{i}$ is a closed interval of real numbers and the payoff function $g_{i}$ is concave and differentiable with respect to the variable $x_{i} \in X_{i}$, for any $i = 1,\cdots,M$. The aim of this paper is to find appropriate conditions on the payoff functions under the well-posedness with respect to the related variational inequality is equivalent to the formulation of the Tykhonov well-posedness in a game context. The idea of the proof is to appeal to a third equivalence, which is the well-posedness of an appropriate minimum problem.
@article{BUMI_2010_9_3_2_a5,
author = {Pensavalle, C. A. and Pieri, G.},
title = {On the {Variational} {Inequality} and {Tykhonov} {Well-Posedness} in {Game} {Theory}},
journal = {Bollettino della Unione matematica italiana},
pages = {337--348},
year = {2010},
volume = {Ser. 9, 3},
number = {2},
zbl = {1195.49031},
mrnumber = {2666362},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a5/}
}
TY - JOUR AU - Pensavalle, C. A. AU - Pieri, G. TI - On the Variational Inequality and Tykhonov Well-Posedness in Game Theory JO - Bollettino della Unione matematica italiana PY - 2010 SP - 337 EP - 348 VL - 3 IS - 2 UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a5/ LA - en ID - BUMI_2010_9_3_2_a5 ER -
Pensavalle, C. A.; Pieri, G. On the Variational Inequality and Tykhonov Well-Posedness in Game Theory. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 337-348. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a5/