Chow-Lasota Theorem for BVPs of Evolution Equations
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 325-335.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We extend the main result of CHOW-LASOTA [1] to evolution equations and show some applications of the outcome.
@article{BUMI_2010_9_3_2_a4,
     author = {Vidossich, Giovanni},
     title = {Chow-Lasota {Theorem} for {BVPs} of {Evolution} {Equations}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {325--335},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {2},
     year = {2010},
     zbl = {1204.34082},
     mrnumber = {2666361},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a4/}
}
TY  - JOUR
AU  - Vidossich, Giovanni
TI  - Chow-Lasota Theorem for BVPs of Evolution Equations
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 325
EP  - 335
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a4/
LA  - en
ID  - BUMI_2010_9_3_2_a4
ER  - 
%0 Journal Article
%A Vidossich, Giovanni
%T Chow-Lasota Theorem for BVPs of Evolution Equations
%J Bollettino della Unione matematica italiana
%D 2010
%P 325-335
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a4/
%G en
%F BUMI_2010_9_3_2_a4
Vidossich, Giovanni. Chow-Lasota Theorem for BVPs of Evolution Equations. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 325-335. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a4/

[1] S. N. Chow - A. Lasota, On boundary value problems for ordinary differential equations, J. Diff. Eqs., 14 (1973), 326-337. | DOI | MR | Zbl

[2] A. Lasota, On the existence and uniqueness of solutions of a multipoint boundary value problem, Annales Polon. Math., 38 (1980), 305-310. | fulltext EuDML | DOI | MR | Zbl

[3] A. Lasota - F. H. Szafraniec, On Hammerstein integral equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 59 (1975), 65-67. | MR | Zbl

[4] N. G. Lloyd, Degree Theory, Cambridge University Press (Cambridge, 1978). | MR

[5] G. Lumer - R. S. Phillips, Dissipative operators in Banach space, Pacific J. Math., 11 (1961), 679-698. | MR | Zbl

[6] A. Pazy, A class of semi-linear equations of evolution, Israel J. Math., 20 (1975), 23-36. | DOI | MR | Zbl

[7] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag (New York, 1983). | DOI | MR | Zbl

[8] L. C. Piccinini - G. Stampacchia - G. Vidossich, Ordinary Differential Equations in $\mathbf{R}^{N}$ (Problems and Methods), Springer-Verlag (New York, 1984). | DOI | MR | Zbl

[9] G. Vidossich, Differential inequalities for evolution equations, Nonlinear Analysis TMA, 25 (1995), 1063-1069. | DOI | MR | Zbl

[10] G. Vidossich, An addition and a correction to my paper "Differential inequalities for evolution equations", Nonlinear Anal. TMA, 72 (2010), 618-623. | DOI | MR | Zbl

[11] G. Vidossich, On the continuous dependence of solutions of boundary value problems for ordinary differential equations, J. Diff. Eqs., 82 (1989), 1-14. | DOI | MR | Zbl

[12] G. Vidossich, Smooth dependence on initial data of mild solutions to evolution equations, Boll. Unione Mat. Ital. (serie 9), 2 (2009), 731-754. | fulltext bdim | fulltext EuDML | MR | Zbl

[13] J. R. Ward JR., Boundary value problems for differential equations in Banach space, J. Math. Anal. Appl., 70 (1979), 589-598. | DOI | MR | Zbl

[14] J. R. Ward JR., Semilinear boundary value problems in Banach space, in "Nonlinear Equations in Abstract Spaces", ed. V. Lakshmikantham, Academic Press (New York, 1978), 469-477. | MR