On Homogeneous and Symmetric CR Manifolds
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 221-265.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider canonical fibrations and algebraic geometric structures on homogeneous CR manifolds, in connection with the notion of CR algebra. We give applications to the classifications of left invariant CR structures on semisimple Lie groups and of CR-symmetric structures on complete flag varieties.
@article{BUMI_2010_9_3_2_a0,
     author = {Altomani, Andrea and Medori, Costantino and Nacinovich, Mauro},
     title = {On {Homogeneous} and {Symmetric} {CR} {Manifolds}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {221--265},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {2},
     year = {2010},
     zbl = {1214.32009},
     mrnumber = {2666357},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a0/}
}
TY  - JOUR
AU  - Altomani, Andrea
AU  - Medori, Costantino
AU  - Nacinovich, Mauro
TI  - On Homogeneous and Symmetric CR Manifolds
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 221
EP  - 265
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a0/
LA  - en
ID  - BUMI_2010_9_3_2_a0
ER  - 
%0 Journal Article
%A Altomani, Andrea
%A Medori, Costantino
%A Nacinovich, Mauro
%T On Homogeneous and Symmetric CR Manifolds
%J Bollettino della Unione matematica italiana
%D 2010
%P 221-265
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a0/
%G en
%F BUMI_2010_9_3_2_a0
Altomani, Andrea; Medori, Costantino; Nacinovich, Mauro. On Homogeneous and Symmetric CR Manifolds. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 221-265. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a0/

[1] A. Altomani - C. Medori - M. Nacinovich, The CR structure of minimal orbits in complex flag manifolds, J. Lie Theory, 16, no. 3 (2006), 483-530. | MR | Zbl

[2] A. Altomani - C. Medori - M. Nacinovich, Orbits of real forms in complex flag manifolds, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (5) vol. IX (2010), 1-41. | MR

[3] A. Andreotti - G. A. Fredricks, Embeddability of real analytic Cauchy-Riemann manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6, no. 2 (1979), 285-304. | fulltext EuDML | MR | Zbl

[4] H. Azad - A. Huckleberry - W. Richthofer, Homogeneous CR-manifolds, J. Reine Angew. Math., 358 (1985), 125-154. | fulltext EuDML | DOI | MR

[5] M. S. Baouendi - P. Ebenfelt - L. P. Rothschild, Real submanifolds in complex space and their mappings, vol. 47, Princeton University Press, Princeton, NJ, 1999. | DOI | MR | Zbl

[6] T. Bloom - I. Graham, A geometric characterization of points of type m on real submanifolds of $C^{n}$, J. Differential Geometry, 12, no. 2 (1977), 171-182. | MR | Zbl

[7] A. Borel - J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math., no. 27 (1965), 55-150. | fulltext EuDML | MR

[8] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algébres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrès par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968. | MR | Zbl

[9] J.-Y. Charbonnel - H. O. Khalgui, Classification des structures CR invariantes pour les groupes de Lie compacts, J. Lie Theory, 14, no. 1 (2004), 165-198. | MR | Zbl

[10] C. Chevalley, A new kind of relationship between matrices, Amer. J. Math., 65 (1943), 521-531. | DOI | MR | Zbl

[11] C. Chevalley, Algebraic Lie algebras, Ann. of Math. (2), 48 (1947), 91-100. | DOI | MR | Zbl

[12] C. Chevalley, Théorie des groupes de Lie. Tome III. Théorémes généraux sur les algèbres de Lie, Actualités Sci. Ind. no. 1226, Hermann Cie, Paris, 1955. | MR | Zbl

[13] G. Fels, Locally homogeneous finitely nondegenerate CR-manifolds, Math. Res. Lett., 14, no. 6 (2007), 893-922. | DOI | MR | Zbl

[14] A. N. García - C. U. Sánchez, On extrinsic symmetric CR-structures on the manifolds of complete flags, Beiträge Algebra Geom., 45, no. 2 (2004), 401-414. | fulltext EuDML | MR

[15] B. Gilligan - A. Huckleberry, Fibrations and globalizations of compact homogeneous CR-manifolds, Izv. Math. 73 (2009), 501-553. | DOI | MR | Zbl

[16] M. Gotô, On algebraic Lie algebras, J. Math. Soc. Japan, 1 (1948), 29-45. | DOI | MR

[17] G. Hochschild, An addition to Ado's theorem, Proc. Amer. Math. Soc., 17 (1966), 531-533. | DOI | MR | Zbl

[18] G. P. Hochschild, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, vol. 75, Springer-Verlag, New York, 1981. | MR | Zbl

[19] J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972, Graduate Texts in Mathematics, Vol. 9. | MR | Zbl

[20] W. Kaup - D. Zaitsev, On symmetric Cauchy-Riemann manifolds, Adv. Math., 149, no. 2 (2000), 145-181. | DOI | MR | Zbl

[21] A. W. Knapp, Lie groups beyond an introduction, second ed., Progress in Mathematics, vol. 140, Birkhäuser Boston Inc. (Boston, MA, 2002). | MR | Zbl

[22] J.-J. Loeb - M. Manjarín - M. Nicolau, Complex and CR-structures on compact Lie groups associated to abelian actions, Ann. Global Anal. Geom., 32, no. 4 (2007), 361-378. | DOI | MR | Zbl

[23] A. Lotta - M. Nacinovich, On a class of symmetric CR manifolds, Adv. Math., 191, no. 1 (2005), 114-146. | DOI | MR | Zbl

[24] A. Lotta - M. Nacinovich, CR-admissible Z2-gradations and CR-symmetries, Ann. Mat. Pura Appl. (4), 187, no. 2 (2008), 221-236. | DOI | MR | Zbl

[25] C. Medori - M. Nacinovich, Classification of semisimple Levi-Tanaka algebras, Ann. Mat. Pura Appl. (4), 174 (1998), 285-349. | DOI | MR | Zbl

[26] C. Medori - M. Nacinovich, Complete nondegenerate locally standard CR manifolds, Math. Ann., 317, no. 3 (2000), 509-526. | DOI | MR | Zbl

[27] C. Medori - M. Nacinovich, The Levi-Malcev theorem for graded CR Lie algebras, Recent advances in Lie theory (Vigo, 2000), Res. Exp. Math., vol. 25 (Heldermann, Lemgo, 2002), 341-346. | MR | Zbl

[28] C. Medori - M. Nacinovich, Algebras of infinitesimal CR automorphisms, J. Algebra, 287, no. 1 (2005), 234-274. | DOI | MR | Zbl

[29] G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math., 78 (1956), 200-221. | DOI | MR | Zbl

[30] A. L. ONISHCHIK (ed.), Lie groups and Lie algebras. I, Encyclopaedia of Mathematical Sciences, vol. 20 (Springer-Verlag, Berlin, 1993).

[31] H. Rossi, Homogeneous strongly pseudoconvex hypersurfaces, Rice Univ. Studies, 59, no. 1 (1973), 131-145, Complex analysis, 1972 (Proc. Conf., Rice Univ., Houston, Tex., 1972), Vol I: Geometry of singularities. | MR

[32] D. M. Snow, Invariant complex structures on reductive Lie groups, J. Reine Angew. Math., 371 (1986), 191-215. | fulltext EuDML | DOI | MR | Zbl

[33] È. B. VINBERG (ed.), Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41 (Springer-Verlag, Berlin, 1994).

[34] G. Warner, Harmonic analysis on semi-simple Lie groups I (Springer-Verlag, New York, 1972). | MR | Zbl