Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2010_9_3_2_a0, author = {Altomani, Andrea and Medori, Costantino and Nacinovich, Mauro}, title = {On {Homogeneous} and {Symmetric} {CR} {Manifolds}}, journal = {Bollettino della Unione matematica italiana}, pages = {221--265}, publisher = {mathdoc}, volume = {Ser. 9, 3}, number = {2}, year = {2010}, zbl = {1214.32009}, mrnumber = {2666357}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a0/} }
TY - JOUR AU - Altomani, Andrea AU - Medori, Costantino AU - Nacinovich, Mauro TI - On Homogeneous and Symmetric CR Manifolds JO - Bollettino della Unione matematica italiana PY - 2010 SP - 221 EP - 265 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a0/ LA - en ID - BUMI_2010_9_3_2_a0 ER -
Altomani, Andrea; Medori, Costantino; Nacinovich, Mauro. On Homogeneous and Symmetric CR Manifolds. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 2, pp. 221-265. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_2_a0/
[1] The CR structure of minimal orbits in complex flag manifolds, J. Lie Theory, 16, no. 3 (2006), 483-530. | MR | Zbl
- - ,[2] Orbits of real forms in complex flag manifolds, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (5) vol. IX (2010), 1-41. | MR
- - ,[3] Embeddability of real analytic Cauchy-Riemann manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6, no. 2 (1979), 285-304. | fulltext EuDML | MR | Zbl
- ,[4] Homogeneous CR-manifolds, J. Reine Angew. Math., 358 (1985), 125-154. | fulltext EuDML | DOI | MR
- - ,[5] Real submanifolds in complex space and their mappings, vol. 47, Princeton University Press, Princeton, NJ, 1999. | DOI | MR | Zbl
- - ,[6] A geometric characterization of points of type m on real submanifolds of $C^{n}$, J. Differential Geometry, 12, no. 2 (1977), 171-182. | MR | Zbl
- ,[7] Groupes réductifs, Inst. Hautes Études Sci. Publ. Math., no. 27 (1965), 55-150. | fulltext EuDML | MR
- ,[8] Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrès par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968. | MR | Zbl
, Éléments de mathématique. Fasc. XXXIV. Groupes et algébres de Lie. Chapitre IV:[9] Classification des structures CR invariantes pour les groupes de Lie compacts, J. Lie Theory, 14, no. 1 (2004), 165-198. | MR | Zbl
- ,[10] A new kind of relationship between matrices, Amer. J. Math., 65 (1943), 521-531. | DOI | MR | Zbl
,[11] Algebraic Lie algebras, Ann. of Math. (2), 48 (1947), 91-100. | DOI | MR | Zbl
,[12] Théorie des groupes de Lie. Tome III. Théorémes généraux sur les algèbres de Lie, Actualités Sci. Ind. no. 1226, Hermann Cie, Paris, 1955. | MR | Zbl
,[13] Locally homogeneous finitely nondegenerate CR-manifolds, Math. Res. Lett., 14, no. 6 (2007), 893-922. | DOI | MR | Zbl
,[14] On extrinsic symmetric CR-structures on the manifolds of complete flags, Beiträge Algebra Geom., 45, no. 2 (2004), 401-414. | fulltext EuDML | MR
- ,[15] Fibrations and globalizations of compact homogeneous CR-manifolds, Izv. Math. 73 (2009), 501-553. | DOI | MR | Zbl
- ,[16] On algebraic Lie algebras, J. Math. Soc. Japan, 1 (1948), 29-45. | DOI | MR
,[17] An addition to Ado's theorem, Proc. Amer. Math. Soc., 17 (1966), 531-533. | DOI | MR | Zbl
,[18] Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, vol. 75, Springer-Verlag, New York, 1981. | MR | Zbl
,[19] Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972, Graduate Texts in Mathematics, Vol. 9. | MR | Zbl
,[20] On symmetric Cauchy-Riemann manifolds, Adv. Math., 149, no. 2 (2000), 145-181. | DOI | MR | Zbl
- ,[21] Lie groups beyond an introduction, second ed., Progress in Mathematics, vol. 140, Birkhäuser Boston Inc. (Boston, MA, 2002). | MR | Zbl
,[22] Complex and CR-structures on compact Lie groups associated to abelian actions, Ann. Global Anal. Geom., 32, no. 4 (2007), 361-378. | DOI | MR | Zbl
- - ,[23] On a class of symmetric CR manifolds, Adv. Math., 191, no. 1 (2005), 114-146. | DOI | MR | Zbl
- ,[24] CR-admissible Z2-gradations and CR-symmetries, Ann. Mat. Pura Appl. (4), 187, no. 2 (2008), 221-236. | DOI | MR | Zbl
- ,[25] Classification of semisimple Levi-Tanaka algebras, Ann. Mat. Pura Appl. (4), 174 (1998), 285-349. | DOI | MR | Zbl
- ,[26] Complete nondegenerate locally standard CR manifolds, Math. Ann., 317, no. 3 (2000), 509-526. | DOI | MR | Zbl
- ,[27] The Levi-Malcev theorem for graded CR Lie algebras, Recent advances in Lie theory (Vigo, 2000), Res. Exp. Math., vol. 25 (Heldermann, Lemgo, 2002), 341-346. | MR | Zbl
- ,[28] Algebras of infinitesimal CR automorphisms, J. Algebra, 287, no. 1 (2005), 234-274. | DOI | MR | Zbl
- ,[29] Fully reducible subgroups of algebraic groups, Amer. J. Math., 78 (1956), 200-221. | DOI | MR | Zbl
,[30] A. L. ONISHCHIK (ed.), Lie groups and Lie algebras. I, Encyclopaedia of Mathematical Sciences, vol. 20 (Springer-Verlag, Berlin, 1993).
[31] Homogeneous strongly pseudoconvex hypersurfaces, Rice Univ. Studies, 59, no. 1 (1973), 131-145, Complex analysis, 1972 (Proc. Conf., Rice Univ., Houston, Tex., 1972), Vol I: Geometry of singularities. | MR
,[32] Invariant complex structures on reductive Lie groups, J. Reine Angew. Math., 371 (1986), 191-215. | fulltext EuDML | DOI | MR | Zbl
,[33] È. B. VINBERG (ed.), Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41 (Springer-Verlag, Berlin, 1994).
[34] Harmonic analysis on semi-simple Lie groups I (Springer-Verlag, New York, 1972). | MR | Zbl
,