A Remark on the Stability of the Determinant in Bidimensional Homogenization
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 209-215
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
For conductivity problems in dimension N = 2, we prove a variant of a classical result: if a sequence $A^{\epsilon}$ of matrices H-converges to $A^{0}$ (or in other terms if $A^{\epsilon}$ converges to $A^{0}$ in the sense of homogenization) and if $det \, A^{\epsilon}$ tends to $c^{0}$ a.e., then one has $det \, A^{0} = c^{0}$.
@article{BUMI_2010_9_3_1_a9,
author = {Farroni, Fernando and Murat, Fran\c{c}ois},
title = {A {Remark} on the {Stability} of the {Determinant} in {Bidimensional} {Homogenization}},
journal = {Bollettino della Unione matematica italiana},
pages = {209--215},
year = {2010},
volume = {Ser. 9, 3},
number = {1},
zbl = {1194.35447},
mrnumber = {2605920},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a9/}
}
TY - JOUR AU - Farroni, Fernando AU - Murat, François TI - A Remark on the Stability of the Determinant in Bidimensional Homogenization JO - Bollettino della Unione matematica italiana PY - 2010 SP - 209 EP - 215 VL - 3 IS - 1 UR - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a9/ LA - en ID - BUMI_2010_9_3_1_a9 ER -
Farroni, Fernando; Murat, François. A Remark on the Stability of the Determinant in Bidimensional Homogenization. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 209-215. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a9/