A Remark on the Stability of the Determinant in Bidimensional Homogenization
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 209-215

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For conductivity problems in dimension N = 2, we prove a variant of a classical result: if a sequence $A^{\epsilon}$ of matrices H-converges to $A^{0}$ (or in other terms if $A^{\epsilon}$ converges to $A^{0}$ in the sense of homogenization) and if $det \, A^{\epsilon}$ tends to $c^{0}$ a.e., then one has $det \, A^{0} = c^{0}$.
@article{BUMI_2010_9_3_1_a9,
     author = {Farroni, Fernando and Murat, Fran\c{c}ois},
     title = {A {Remark} on the {Stability} of the {Determinant} in {Bidimensional} {Homogenization}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {209--215},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {1},
     year = {2010},
     zbl = {1194.35447},
     mrnumber = {2605920},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a9/}
}
TY  - JOUR
AU  - Farroni, Fernando
AU  - Murat, François
TI  - A Remark on the Stability of the Determinant in Bidimensional Homogenization
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 209
EP  - 215
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a9/
LA  - en
ID  - BUMI_2010_9_3_1_a9
ER  - 
%0 Journal Article
%A Farroni, Fernando
%A Murat, François
%T A Remark on the Stability of the Determinant in Bidimensional Homogenization
%J Bollettino della Unione matematica italiana
%D 2010
%P 209-215
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a9/
%G en
%F BUMI_2010_9_3_1_a9
Farroni, Fernando; Murat, François. A Remark on the Stability of the Determinant in Bidimensional Homogenization. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 209-215. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a9/