A Remark on the Stability of the Determinant in Bidimensional Homogenization
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 209-215.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

For conductivity problems in dimension N = 2, we prove a variant of a classical result: if a sequence $A^{\epsilon}$ of matrices H-converges to $A^{0}$ (or in other terms if $A^{\epsilon}$ converges to $A^{0}$ in the sense of homogenization) and if $det \, A^{\epsilon}$ tends to $c^{0}$ a.e., then one has $det \, A^{0} = c^{0}$.
@article{BUMI_2010_9_3_1_a9,
     author = {Farroni, Fernando and Murat, Fran\c{c}ois},
     title = {A {Remark} on the {Stability} of the {Determinant} in {Bidimensional} {Homogenization}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {209--215},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {1},
     year = {2010},
     zbl = {1194.35447},
     mrnumber = {2605920},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a9/}
}
TY  - JOUR
AU  - Farroni, Fernando
AU  - Murat, François
TI  - A Remark on the Stability of the Determinant in Bidimensional Homogenization
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 209
EP  - 215
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a9/
LA  - en
ID  - BUMI_2010_9_3_1_a9
ER  - 
%0 Journal Article
%A Farroni, Fernando
%A Murat, François
%T A Remark on the Stability of the Determinant in Bidimensional Homogenization
%J Bollettino della Unione matematica italiana
%D 2010
%P 209-215
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a9/
%G en
%F BUMI_2010_9_3_1_a9
Farroni, Fernando; Murat, François. A Remark on the Stability of the Determinant in Bidimensional Homogenization. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 209-215. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a9/

[1] L. Boccardo - F. Murat, Homogénéisation de problèmes quasi-linéaires, in Atti del convegno: Studio di problemi-limite della analisi funzionale, Bressanone, settembre 1981, Pitagora, Bologna (1982), 13-51.

[2] M. Briane - D. Manceau - G. W. Milton, Homogenization of the two-dimensional Hall effect, J. Math. Anal. Appl., 339 , 2 (2008), 1468-1484. | DOI | MR | Zbl

[3] A. M. Dykhne, Conductivity of a two dimensional two-phase system, A. Nauk. SSSR, 59 (1970), 110-115.

[4] G. A. Francfort - F. Murat, Optimal bounds for conduction in two-dimensional, two-phase, anisotropic media, in Nonclassical continuum mechanics (Durham, 1986), R. J. Knops and A. A. Lacey, eds., London Mathematical Society Lecture Notes Series 122 (Cambridge University Press, Cambridge, 1987), 197-212. | DOI | MR

[5] J. B. Keller, A theorem on conductivity of composite medium, J. Mathematical Phys., 5, 4 (1964), 548-549. | DOI | MR | Zbl

[6] A. Marino - S. Spagnolo, Un tipo di approssimazione dell'operatore $\sum_{i,j = 1}^{n} \, D_{i}(a_{ij}(x) \, D_{j})$ con operatori $\sum_{j = 1}^{n} \, D_{j}(\beta(x) \, D_{j})$, Annali della Scuola Normale Superiore di Pisa 23, 4 (1969), 657-673. | fulltext EuDML | MR

[7] K. S. Mendelson, A theorem on the effective conductivity of a two-dimensional heterogeneous medium, J. of Applied Physics, 46 , 11 (1975), 4740-4741.

[8] G. W. Milton, The theory of composites, Cambridge Monographs in Applied and Computational Mathematics 6 , Cambridge University Press (Cambridge, 2002). | DOI | MR | Zbl

[9] F. Murat, H-convergence, Séminaire d'analyse fonctionnelle et numérique 1977-78, Université d'Alger. English translation: F. Murat - L. Tartar, H-convergence, in Topics in the mathematical modelling of composite materials, A. Cherkaev - R. V. Kohn, eds., Progress in Nonlinear Differential Equations and their Applications, 31 (Birkhäuser, Boston, 1997), 21-43. | MR

[10] C. Sbordone, $\Gamma$-convergence and G-convergence, Rend. Sem. Mat. Univ. Politec. Torino, 40 (1983), 25-51. | MR

[11] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Annali della Scuola Normale Superiore di Pisa, 22, 3 (1968), 571-597. | fulltext EuDML | MR

[12] L. Tartar, The general theory of homogenization, A personalized introduction, Lecture Notes of the Unione Matematica Italiana, 7 (Springer-Verlag, Berlin, 2010). | DOI | MR | Zbl