Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 179-206.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We give a result concerning the correction to the Central Limit Theorem for a Random Walk on the lattice $\mathbf{Z}^{2}$ which interacts with a random environment under a small randomness condition. Our main theorem close a gap which dates back to seminal works by Boldrighini, Minlos and Pellegrinotti, see [3], [8] and [9]. Asymptotic behaviour of the corrections to the average and the covariance matrix in dimension $\nu = 1,2$ are also presented.
@article{BUMI_2010_9_3_1_a8,
     author = {Di Persio, L.},
     title = {Anomalous {Behaviour} of the {Correction} to the {Central} {Limit} {Theorem} for a {Model} of {Random} {Walk} in {Random} {Media}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {179--206},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {1},
     year = {2010},
     zbl = {1202.60164},
     mrnumber = {2605919},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a8/}
}
TY  - JOUR
AU  - Di Persio, L.
TI  - Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 179
EP  - 206
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a8/
LA  - en
ID  - BUMI_2010_9_3_1_a8
ER  - 
%0 Journal Article
%A Di Persio, L.
%T Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media
%J Bollettino della Unione matematica italiana
%D 2010
%P 179-206
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a8/
%G en
%F BUMI_2010_9_3_1_a8
Di Persio, L. Anomalous Behaviour of the Correction to the Central Limit Theorem for a Model of Random Walk in Random Media. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 179-206. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a8/

[1] J. Bérard, The almost sure central limit theorem for one-dimensional nearest-neighbour random walks in a space-time random environment, J. Appl. Probab., 41, no. 1 (2004), 83-92. | DOI | MR | Zbl

[2] M. S. Bernabei, Anomalous behaviour for the random corrections to the cumulants of random walks in fluctuating random media, Probab. Theory Related Fields, 119, no. 3 (2001), 410-432. | DOI | MR | Zbl

[3] M. S. Bernabei - C. Boldrighini - R. A. Minlos - A. Pellegrinotti, Almost-sure central limit theorem for a model of random walk in fluctuating random environment, Markov Process. Related Fields, 4, no. 3 (1998), 381-393. | MR | Zbl

[4] C. Boldrighini - G. Cosimi - S. Frigio - A. Pellegrinotti, Computer simulations for some one-dimensional models of random walks in fluctuating random environment, J. Stat. Phys., 121, no. 3-4 (2005), 361-372. | DOI | MR | Zbl

[5] C. Boldrighini - Yu. G. Kondratiev - R. A. Minlos - A. Pellegrinotti - E. A. Zhizhina, Random jumps in evolving random environment, Markov Process. Related Fields, 14, no. 4 (2008), 543-570. | MR | Zbl

[6] C. Boldrighini - R. A. Minlos - F. R. Nardi - A. Pellegrinotti, Asymptotic decay of correlations for a random walk in interaction with a Markov field, Mosc. Math. J., 5, no. 3 (2005), 507-522, 742. | MR | Zbl

[7] C. Boldrighini - R. A. Minlos - F. R. Nardi - A. Pellegrinotti, Asymptotic decay of correlations for a random walk on the lattice $\mathbf{Z}^{d}$ in interaction with a Markov field, Mosc. Math. J., 8, no. 3 (2008), 419-431, 615. | MR | Zbl

[8] C. Boldrighini - R. A. Minlos - A. Pellegrinotti, Almost-sure central limit theorem for a Markov model of random walk in dynamical random environment, Probab. Theory Related Fields, 109, no. 2 (1997), 245-273. | DOI | MR | Zbl

[9] C. Boldrighini - R. A. Minlos - A. Pellegrinotti, Central limit theorem for a random walk in dynamical environment: integral and local, Proceedings of the Third Ukrainian-Scandinavian Conference in Probability Theory and Mathematical Statistics (Kiev, 1999), vol. 5 (1999), 16-28. | MR | Zbl

[10] C. Boldrighini - R. A. Minlos - A. Pellegrinotti, Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive, Probab. Theory Related Fields, 129, no. 1 (2004), 133-156. | DOI | MR | Zbl

[11] C. Boldrighini - R. A. Minlos - A. Pellegrinotti, Random walks in a random (fluctuating) environment, Uspekhi Mat. Nauk, 62, no. 4 (2007), 27-76. | DOI | MR | Zbl

[12] C. Boldrighini - A. Pellegrinotti, $T^{-1/4}$-noise for random walks in dynamic environment on $\mathbf{Z}$, Mosc. Math. J., 1, no. 3 (2001), 365-380, 470-471. | MR | Zbl

[13] J. Brémont, On some random walks on $\mathbf{Z}$ in random medium, Ann. Probab., 30, no. 3 (2002), 1266-1312. | DOI | MR

[14] J. Brémont, Random walks in random medium on $\mathbf{Z}$ and Lyapunov spectrum, Ann. Inst. H. Poincaré Probab. Statist., 40, no. 3 (2004), 309-336. | fulltext EuDML | DOI | MR

[15] J. Brémont, One-dimensional finite range random walk in random medium and invariant measure equation, Ann. Inst. Henri Poincaré Probab. Stat., 45, no. 1 (2009), 70-103. | fulltext EuDML | DOI | MR

[16] Y. S. Chow - H. Teicher, Probability theory, third ed., Springer Texts in Statistics (Springer-Verlag, New York, 1997), Independence, interchangeability, martingales. | DOI | MR

[17] D. Dolgopyat - G. Keller - C. Liverani, Random walk in Markovian environment, Ann. Probab., 36, no. 5 (2008), 1676-1710. | DOI | MR | Zbl

[18] Ĭ. Ī. Gīhman - A. V. Skorohod, The theory of stochastic processes. I, English ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 210 (Springer-Verlag, Berlin, 1980), Translated from the Russian by Samuel Kotz. | MR | Zbl

[19] I. A. Ibragimov - Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman. | MR | Zbl

[20] O. Zeitouni, Random walks in random environments, J. Phys. A, 39, no. 40 (2006), R433-R464. | DOI | MR | Zbl