q-Hypergeometric Functions and Irrationality Measures
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 137-148.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We present a q-analogue of the Rhin-Viola method for the analysis of $\Phi$-adic valuations of the q-gamma factors occurring in the basic Euler-Pochhammer integral representation of the Heine series $2\phi_{1}$. Moreover, we show that this approach yields the best known irrationality measures for $\log_{q}(z)$, $\log_{q}(2)$ and $\zeta_{q}(1)$.
@article{BUMI_2010_9_3_1_a5,
     author = {Meril\"a, Ville},
     title = {q-Hypergeometric {Functions} and {Irrationality} {Measures}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {137--148},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {1},
     year = {2010},
     zbl = {1208.11085},
     mrnumber = {2605916},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a5/}
}
TY  - JOUR
AU  - Merilä, Ville
TI  - q-Hypergeometric Functions and Irrationality Measures
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 137
EP  - 148
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a5/
LA  - en
ID  - BUMI_2010_9_3_1_a5
ER  - 
%0 Journal Article
%A Merilä, Ville
%T q-Hypergeometric Functions and Irrationality Measures
%J Bollettino della Unione matematica italiana
%D 2010
%P 137-148
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a5/
%G en
%F BUMI_2010_9_3_1_a5
Merilä, Ville. q-Hypergeometric Functions and Irrationality Measures. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 137-148. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a5/

[1] G. E. Andrews - R. Askey - R. Roy, Special functions, Encyclopedia of Mathematics and Its Applications, 71 (Cambridge University Press, Cambridge, 1999), xvi+664. | DOI | MR

[2] G. V. Chudnovsky, Hermite-Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi$, Lect. Notes in Math., 925 (1982), 299-322. | MR

[3] M. Hata, Legendre type polynomials and irrationality measures, J. Reine Angew. Math., 407 (1990), 99-125. | fulltext EuDML | DOI | MR

[4] T. Matala-Aho - K. Väänänen - W. Zudilin, New irrationality measures for q-logarithms, Math.Comp., 75, no. 254 (2006), 879-889. | DOI | MR | Zbl

[5] V. Merilä, On arithmetical properties of certain q-series, Results Math., 53, no. 1-2 (2009), 129-151. | DOI | MR | Zbl

[6] G. Rhin - C. Viola, On a permutation group related to $\zeta(2)$, Acta Arith., 77, no. 1 (1996), 23-56. | fulltext EuDML | DOI | MR | Zbl

[7] C. Viola, Hypergeometric functions and irrationality measures, Analytic number theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser., 247 (Cambridge Univ. Press, Cambridge, 1997), 353-360. | DOI | MR | Zbl

[8] W. Zudilin, Remarks on irrationality of q-harmonic series, Manuscripta Math., 107, no. 4 (2002), 463-477. | DOI | MR | Zbl

[9] W. Zudilin, Heine's basic transform and a permutation group for q-harmonic series, Acta Arith., 111, no. 2 (2004), 153-164. | fulltext EuDML | DOI | MR | Zbl