Projective Geometry Related to the Singularities of Theta Divisors of Jacobians
Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 93-109.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

By studying the higher order focal properties of a family of linear spaces naturally associated to the singular locus of the theta divisor of a non-hyperelliptic jacobian of genus $g \ge 5$, we give a new proof of the classical theorem of Torelli. Related questions and open problems are also discussed.
@article{BUMI_2010_9_3_1_a2,
     author = {Ciliberto, C. and Sernesi, E.},
     title = {Projective {Geometry} {Related} to the {Singularities} of {Theta} {Divisors} of {Jacobians}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {93--109},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {1},
     year = {2010},
     zbl = {1203.14064},
     mrnumber = {2605913},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a2/}
}
TY  - JOUR
AU  - Ciliberto, C.
AU  - Sernesi, E.
TI  - Projective Geometry Related to the Singularities of Theta Divisors of Jacobians
JO  - Bollettino della Unione matematica italiana
PY  - 2010
SP  - 93
EP  - 109
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a2/
LA  - en
ID  - BUMI_2010_9_3_1_a2
ER  - 
%0 Journal Article
%A Ciliberto, C.
%A Sernesi, E.
%T Projective Geometry Related to the Singularities of Theta Divisors of Jacobians
%J Bollettino della Unione matematica italiana
%D 2010
%P 93-109
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a2/
%G en
%F BUMI_2010_9_3_1_a2
Ciliberto, C.; Sernesi, E. Projective Geometry Related to the Singularities of Theta Divisors of Jacobians. Bollettino della Unione matematica italiana, Série 9, Tome 3 (2010) no. 1, pp. 93-109. http://geodesic.mathdoc.fr/item/BUMI_2010_9_3_1_a2/

[1] A. Andreotti - A. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa, 21 (3) (1967), 189-238. | fulltext EuDML | MR | Zbl

[2] E. Arbarello - M. Cornalba - Ph. Griffiths - J. Harris, Geometry of algebraic curves, Volume I, Grundlehren der math. Wisensch, 267 (Springer-Verlag, 1984). | DOI | MR

[3] E. Arbarello - J. Harris, Canonical curves and quadrics of rank 4, Compositio Math., 43 (1981), 145-179. | fulltext EuDML | MR | Zbl

[4] A. Bajravani, Focal varieties of curves of genus 6 and 8, preprint. | DOI | MR | Zbl

[5] C. Ciliberto - G. Van Der Geer, Andreotti-Mayer Loci and the Schottky Problem, Documenta Math., 13 (2008), 453-504. | fulltext EuDML | MR

[6] C. Ciliberto - E. Sernesi, Singularities of the theta divisor and congruences of planes, J. Algebraic Geom., 1 (1992), 231-250. | MR | Zbl

[7] C. Ciliberto - E. Sernesi, Singularities of the Theta Divisor and Families of Secant Spaces to a Canonical Curve, J. Algebra, 171 (1995), 867-893. | DOI | MR | Zbl

[8] C. Ciliberto - E. Sernesi, On the geometry of canonical curves of odd genus, Comm. in Alg., 28 (12) (2000), 5993-6002. | DOI | MR | Zbl

[9] G. Darboux, Sur le contact des courbes et des surfaces, Bull. Soc. math. de France, 4 (2) (1880). | fulltext EuDML | Zbl

[10] D. Eisenbud, Linear sections of determinantal varieties, American J. of Math., 110 (1988), 541-575. | DOI | MR | Zbl

[11] M. Green, Quadrics of rank four in the ideal of the canonical curve, Invent. Math., 75 (1984), 85-104. | fulltext EuDML | DOI | MR | Zbl

[12] E. Rogora, Varieties with many lines, Manuscripta math., 82 (1994), 207-226. | fulltext EuDML | DOI | MR | Zbl

[13] B. Segre, Sulle $V_{n}$ contenenti più di $\infty^{n-k}S_{k}$, Nota II, Rend. Accad. Naz. Lincei, 5 (8) (1948), 275-280. | MR

[14] C. Segre, Sui fochi di 2° ordine dei sistemi infiniti di piani, e sulle curve iperspaziali con una doppia infinità di piani plurisecanti. Atti R. Accad. Lincei, 30 (5) (1921), 67-71. | Zbl