Voltage-Current Characteristcs of Varistors and Thermistors
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 635-650.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The voltage-current characteristics of two classes of nonlinear resistors (varistors and thermistors) modelled as three-dimensional bodies is derived from the corresponding systems of nonlinear elliptic boundary value problems. Theorems of existence and uniqueness of solutions are presented, together with certain properties of monotonicity of the conductance.
@article{BUMI_2009_9_2_3_a7,
     author = {Cimatti, Giovanni},
     title = {Voltage-Current {Characteristcs} of {Varistors} and {Thermistors}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {635--650},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {3},
     year = {2009},
     zbl = {1181.35275},
     mrnumber = {2569296},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a7/}
}
TY  - JOUR
AU  - Cimatti, Giovanni
TI  - Voltage-Current Characteristcs of Varistors and Thermistors
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 635
EP  - 650
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a7/
LA  - en
ID  - BUMI_2009_9_2_3_a7
ER  - 
%0 Journal Article
%A Cimatti, Giovanni
%T Voltage-Current Characteristcs of Varistors and Thermistors
%J Bollettino della Unione matematica italiana
%D 2009
%P 635-650
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a7/
%G en
%F BUMI_2009_9_2_3_a7
Cimatti, Giovanni. Voltage-Current Characteristcs of Varistors and Thermistors. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 635-650. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a7/

[1] W. Allegretto - H. Xie, Existence of solutions for the time-dependent thermistor problem equations, IMA J. Appl. Math., 48 (1992), 271-281. | DOI | MR | Zbl

[2] J. Burbea, A Numerical determination of the modulus of doubly connected domains by using the Bergman curvature, Math. of Comp., 25 (1971), 743-756. | DOI | MR | Zbl

[3] G. Cimatti, Remark on existence and uniqueness for thermistor problem under mixed boundary conditions, Quart. Appl. Math., 47 (1989), 117-121. | DOI | MR | Zbl

[4] Components and Materials, Philips Technical Manual, August 1979.

[5] B. Dacorogna, Direct Methods in the Calculus of Variations (Springer-Verlag, 1989). | DOI | MR | Zbl

[6] D. Gaier, Konstructive Methoden der Konformen Abbildung (Springer-Verlag, 1964). | MR

[7] S. Howison, Practical Applied Mathematics, Cambridge Texts in Applied Mathematics (2005). | DOI | MR | Zbl

[8] L. Landau - E. Lifchitz, Électrodynamique des Milieux Continus, Editions MIR (Moscou, 1957).

[9] F. Llwwellyn Jones, The Physics of Electrical Contacts (Oxford University Press, 1957).

[10] Z. Nehari, Conformal Mapping, McGraw Hill (New York, 1952). | MR

[11] P. Pucci - J. Serrin, The Maximum Principle (Birkhäuser, 2007). | MR

[12] J. W. S. Reyleigh, The Theory of Sound (Dover, New York, 1945). | MR