A Regular Threefold of General Type with $p_{g} = 0$ and $P_{2} = 6$
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 607-621.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The range of the bigenus $P_{2}$ is one of the unsolved problems concerning smooth complex projective regular threefolds of general type with $p_{g} = 0$: The examples in the literature have $P_{2} \le 5$. In the present paper we present a non-singular threefold with $p_{g} = q_{1} = q_{2} = 0$; $P_{2} = 6$; the bicanonical map is stably birational.
@article{BUMI_2009_9_2_3_a5,
     author = {Ronconi, M. Cristina},
     title = {A {Regular} {Threefold} of {General} {Type} with $p_{g} = 0$ and $P_{2} = 6$},
     journal = {Bollettino della Unione matematica italiana},
     pages = {607--621},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {3},
     year = {2009},
     zbl = {1184.14069},
     mrnumber = {2569294},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a5/}
}
TY  - JOUR
AU  - Ronconi, M. Cristina
TI  - A Regular Threefold of General Type with $p_{g} = 0$ and $P_{2} = 6$
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 607
EP  - 621
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a5/
LA  - en
ID  - BUMI_2009_9_2_3_a5
ER  - 
%0 Journal Article
%A Ronconi, M. Cristina
%T A Regular Threefold of General Type with $p_{g} = 0$ and $P_{2} = 6$
%J Bollettino della Unione matematica italiana
%D 2009
%P 607-621
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a5/
%G en
%F BUMI_2009_9_2_3_a5
Ronconi, M. Cristina. A Regular Threefold of General Type with $p_{g} = 0$ and $P_{2} = 6$. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 607-621. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a5/

[1] R. Gattazzo, Examples of threefolds with $q_{1} = q_{2} = p_{g} = 0$ and $3 \le P_{2} \le 4$, preprint. | MR | Zbl

[2] Ph. Griffiths - J. Harris, Principles of Algebraic Geometry, Wiley (New York, 1978). | MR | Zbl

[3] A. R. Iano-Fletcher, Working with weighted complete intersections, Explicit birational Geometry of 3-folds, London Math. Soc., Lecture Note Ser. 281, Cambridge Univ. Press (Cambridge, 2000), 101-173. | MR | Zbl

[4] S. Iitaka, Algebraic Geometry (Springer-Verlag, New York-Berlin, 1982). | MR

[5] M. Reid, Young person's guide to canonical singularities, Algebraic Geometry, Bowdoin, 1985, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence (1987), 345-414. | MR

[6] M. C. Ronconi, A Threefold of general type with $q_{1} = q_{2} = p_{g} = P_{2} =0$, Acta Appl. Math., 75, no. 1-3 (2003), 133-150. | DOI | MR | Zbl

[7] E. Stagnaro, Pluricanonical maps of a threefold of general type, Proc. of Greco Conference on Commutative Algebra and Algebraic Geometry, (Catania, 2001). Le Matematiche (Catania), 55, no. 2 (2000) (2002), 533-543. | MR | Zbl

[8] E. Stagnaro, Adjoints and pluricanonical adjoints to an algebraic hypersurface, Ann. Mat. Pura Appl., (4), 180, no. 2 (2001), 147-201. | DOI | MR | Zbl

[9] E. Stagnaro, Gaps in the birationality of pluricanonical transformations, Accademia Ligure di Sc. e Lettere, Collana di Studi e Ricerche (Genova, 2004), 5-53.

[10] E. Stagnaro, A threefold with $p_{g} = 0$ and $P_{2} = 2$, Rend. Semin. Mat. Univ. Padova, 121 (2009), 13-31. | fulltext EuDML | DOI | MR