The Dynamics of an Interactional Model of Rabies Transmitted between Human and Dogs
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 591-605.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Assuming that the population of dogs is constant and the population of human satisfies the Logistical model, an interactional model of rabies transmitted between human and dogs is formulated. Two thresholds $R_{0}$ and $R_{1}$ which determine the outcome of the disease are identified. Utilizing the method of Lyapunov function and the property of the cooperative systems, we get the global asymptotic stability for both the disease-free equilibrium and the endemic equilibrium. A critical vaccination rate is obtained, which determines whether the dog rabies dies out or becomes endemic. Some suggestions are provided to the prevention and control of rabies according to the results of analysis and simulations.
@article{BUMI_2009_9_2_3_a4,
     author = {Yang, Wei and Lou, Jie},
     title = {The {Dynamics} of an {Interactional} {Model} of {Rabies} {Transmitted} between {Human} and {Dogs}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {591--605},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {3},
     year = {2009},
     zbl = {1178.92050},
     mrnumber = {2569293},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a4/}
}
TY  - JOUR
AU  - Yang, Wei
AU  - Lou, Jie
TI  - The Dynamics of an Interactional Model of Rabies Transmitted between Human and Dogs
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 591
EP  - 605
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a4/
LA  - en
ID  - BUMI_2009_9_2_3_a4
ER  - 
%0 Journal Article
%A Yang, Wei
%A Lou, Jie
%T The Dynamics of an Interactional Model of Rabies Transmitted between Human and Dogs
%J Bollettino della Unione matematica italiana
%D 2009
%P 591-605
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a4/
%G en
%F BUMI_2009_9_2_3_a4
Yang, Wei; Lou, Jie. The Dynamics of an Interactional Model of Rabies Transmitted between Human and Dogs. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 591-605. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a4/

[1] Y. Z. Zhang, The epidemiology of rabies in China, Chinese Journal of vaccines and Immulization, 11 (2005), 140-143 (in Chinese).

[2] Y. Z. Zhang - C. L. Xiong - D. L. Xiao - R. J. Jiang - Z. X. Wang - L. Z. Zhang - Z. F. Fu, Human rabies in China, Emerg. Infect. Dis., 11 (2005), 12.

[3] Y. X. Yu, Rabies and the Vaccines, Chinese Medical Techology Press, Beijing, 2001.

[4] R. M. Anderson - H. C. Jackson - R. M. May - A. M. Smith, Population dynamics of fox rabies in Europe, Nature, 289 (1981), 765-771.

[5] C. J. Rhodes - R. P. D. Atkinson - R. M. Anderson - D. W. Macdonald, Rabies in Zimbabwe: reservior dogs and the implications for disease control, Philos. Trans. R. Soc. Lond. B Biol. Sci., 353 (1998), 999-1010.

[6] A. Kallen - P. Arcuri - J. D. Murray, A simple model for the spatial spread and control of rabies, J. Theor. Biol., 116 (1985), 377-393. | DOI | MR

[7] L. J. S. Allen - D. A. Flores - R. K. Ratnayake - J. R. Herbold, Discrete-time deterministic and stochastic models for the spread of rabies, A. M. C., 132 (2002), 271-292. | DOI | MR | Zbl

[8] X. W. Wang - J. Lou, Two dynamical models about rabies between dogs and human, J. Biol. Sys., 16 (2008), 519-529. | Zbl

[9] M. W. Hirsch, Systems of differential equations that are competivitive or cooperative. V. Convergence in 3-dimensional systems, J. D. E., 80 (1989), 94-106. | DOI | MR | Zbl

[10] J. F. Jiang, A note on a global stability theorem of M. W. Hirsch, Proc. A. M. C., 112 (1991), 803-806. | DOI | MR | Zbl

[11] X. Zhao, Dynamical systems in population biology, C. M. S., Springer, (2003), 15-20. | DOI | MR

[12] Z. E. Ma - Y. C. Zhou - W. D. Wang - Z. Jin, The Mathematical Modeling and Research of the Endemiology Dynamics, Science Press, Beijing, (2004), 58-59 (in Chinese).

[13] C. Costill-Chacez - H. R. Thieme, Asymptotically autonomous epidemic models. In: O. Arino et al.(Eds.). Math. Population Dynamics: Analysis of Heterogenieity I Theory of Epidemics, Wuerz, (1995), 33.