Geometry of Syzygies via Poncelet Varieties
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 579-589.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We consider the Grassmannian $\mathbb{G}r(k,n)$ of $(k+1)$-dimensional linear subspaces of $V_{n} = H^{0} (\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}_{1}} (n))$. We define $\mathfrak{X}_{k,r,d}$ as the classifying space of the $k$-dimensional linear systems of degree $n$ on $\mathbb{P}^{1}$, whose bases realize a fixed number $r$ of polynomial relations of fixed degree $d$, say $r$ syzygies of degree $d$. Firstly, we compute the dimension of $\mathfrak{X}_{k,r,d}$. In the second part we make a link between $\mathfrak{X}_{k,r,d}$ and the Poncelet varieties. In particular, we prove that the existence of linear syzygies implies the existence of singularities on the Poncelet varieties.
@article{BUMI_2009_9_2_3_a3,
     author = {Ilardi, Giovanna and Supino, Paola and Vall\`es, Jean},
     title = {Geometry of {Syzygies} via {Poncelet} {Varieties}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {579--589},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {3},
     year = {2009},
     zbl = {1197.13013},
     mrnumber = {2569292},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a3/}
}
TY  - JOUR
AU  - Ilardi, Giovanna
AU  - Supino, Paola
AU  - Vallès, Jean
TI  - Geometry of Syzygies via Poncelet Varieties
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 579
EP  - 589
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a3/
LA  - en
ID  - BUMI_2009_9_2_3_a3
ER  - 
%0 Journal Article
%A Ilardi, Giovanna
%A Supino, Paola
%A Vallès, Jean
%T Geometry of Syzygies via Poncelet Varieties
%J Bollettino della Unione matematica italiana
%D 2009
%P 579-589
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a3/
%G en
%F BUMI_2009_9_2_3_a3
Ilardi, Giovanna; Supino, Paola; Vallès, Jean. Geometry of Syzygies via Poncelet Varieties. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 579-589. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a3/

[1] W. Fulton - J. Harris, Representation theory, a first course, GTM 129, Springer-Verlag, 1991. | DOI | MR | Zbl

[2] J. Harris, Algebraic Geometry, a first course, GTM 133, Springer-Verlag, 1992. | DOI | MR

[3] G. Ilardi - P. Supino, Linear systems on $\mathbb{P}^{1}$ with syzygies, Comm. Algebra, 34, no. 11 (2006), 4173-4186. | DOI | MR | Zbl

[4] L. Ramella, La stratification du schema de Hilbert des courbes rationnelles de $\mathbb{P}^{n}$ par le fibré tangent restreint, C.R. Acad. Sci. Paris, 311 (1990), 181-184. | MR | Zbl

[5] R. L. E. Schwarzenberger, Vector bundles on the projective plane, Proc. London Math. Soc., 11 (1961), 623-640. | DOI | MR | Zbl

[6] G. Trautmann, Poncelet curves and associated theta characteristics, Expositiones Math., 6 (1988), 29-64. | MR | Zbl

[7] J. Vallès, Fibrés de Schwarzenberger et coniques de droites sauteuses, Bull. Soc. Math. France, 128, no. 3 (2000), 433-449. | fulltext EuDML | MR