Geometry of Syzygies via Poncelet Varieties
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 579-589
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We consider the Grassmannian $\mathbb{G}r(k,n)$ of $(k+1)$-dimensional linear subspaces of $V_{n} = H^{0} (\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}_{1}} (n))$. We define $\mathfrak{X}_{k,r,d}$ as the classifying space of the $k$-dimensional linear systems of degree $n$ on $\mathbb{P}^{1}$, whose bases realize a fixed number $r$ of polynomial relations of fixed degree $d$, say $r$ syzygies of degree $d$. Firstly, we compute the dimension of $\mathfrak{X}_{k,r,d}$. In the second part we make a link between $\mathfrak{X}_{k,r,d}$ and the Poncelet varieties. In particular, we prove that the existence of linear syzygies implies the existence of singularities on the Poncelet varieties.
@article{BUMI_2009_9_2_3_a3,
author = {Ilardi, Giovanna and Supino, Paola and Vall\`es, Jean},
title = {Geometry of {Syzygies} via {Poncelet} {Varieties}},
journal = {Bollettino della Unione matematica italiana},
pages = {579--589},
year = {2009},
volume = {Ser. 9, 2},
number = {3},
zbl = {1197.13013},
mrnumber = {2569292},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a3/}
}
TY - JOUR AU - Ilardi, Giovanna AU - Supino, Paola AU - Vallès, Jean TI - Geometry of Syzygies via Poncelet Varieties JO - Bollettino della Unione matematica italiana PY - 2009 SP - 579 EP - 589 VL - 2 IS - 3 UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a3/ LA - en ID - BUMI_2009_9_2_3_a3 ER -
Ilardi, Giovanna; Supino, Paola; Vallès, Jean. Geometry of Syzygies via Poncelet Varieties. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 579-589. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a3/