Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2009_9_2_3_a12, author = {Vidossich, Giovanni}, title = {Smooth {Dependence} on {Initial} {Data} of {Mild} {Solutions} to {Evolution} {Equations}}, journal = {Bollettino della Unione matematica italiana}, pages = {731--754}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {3}, year = {2009}, zbl = {1186.65066}, mrnumber = {2569301}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a12/} }
TY - JOUR AU - Vidossich, Giovanni TI - Smooth Dependence on Initial Data of Mild Solutions to Evolution Equations JO - Bollettino della Unione matematica italiana PY - 2009 SP - 731 EP - 754 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a12/ LA - en ID - BUMI_2009_9_2_3_a12 ER -
Vidossich, Giovanni. Smooth Dependence on Initial Data of Mild Solutions to Evolution Equations. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 731-754. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a12/
[1] Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl., 82 (1981), 33-48. | DOI | MR | Zbl
,[2] esults on periodic solutions of parabolic equations suggested by elliptic theory, Boll. U.M.I., 1-B (1982), 1089-1104. | MR | Zbl
- , R[3] An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998. | MR | Zbl
- ,[4] Stable manifolds for hyperbolic sets, In: "Proc. Symp. Pure Math.", vol. XIV, Amer. Math. Society (Providence, 1970), 133-163. | MR | Zbl
- ,[5] A class of semi-linear equations of evolution, Israel J. Math., 20 (1975), 23-36. | DOI | MR | Zbl
,[6] Smooth dependence of solutions of differential equations on initial data: a simple proof, Bol. Soc. Brasil. Mat., 4 (1973), 55-59. | DOI | MR | Zbl
,[7] Infinite-dimensional Dynamical Systems in Mechanics and Physics (Springer-Verlag, New York, 1988). | DOI | MR | Zbl
,[8] Continuous dependence for parabolic evolution equations, In: "Recent Trends in Differential Equations", R. P. Agarwal (ed.), World Scientific (Singapore, 1992), 559-568. | MR | Zbl
,[9] A (semi-encyclopedic) first course in ODEs, in a "never-ending" preparation since 1974.
,[10] Boundary value problems for differential equations in Banach space, J. Math. Anal. Appl., 70 (1979), 589-598. | DOI | MR | Zbl
,