Algebraic Surfaces and Their Moduli Spaces: Real, Differentiable and Symplectic Structures
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 537-558

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The theory of algebraic surfaces, according to Federigo Enriques, revealed `riposte armonie' (hidden harmonies) who the mathematicians to undertook their investigation. Purpose of this article is to show that this holds still nowadays; and point out, while reviewing recent progress and unexpected new results, the many faceted connections of the theory, among others, with algebra (Galois group of the rational numbers), with real geometry, and with differential and symplectic topology of 4 manifolds.
@article{BUMI_2009_9_2_3_a0,
     author = {Catanese, Fabrizio},
     title = {Algebraic {Surfaces} and {Their} {Moduli} {Spaces:} {Real,} {Differentiable} and {Symplectic} {Structures}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {537--558},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {3},
     year = {2009},
     zbl = {1184.14061},
     mrnumber = {2569289},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a0/}
}
TY  - JOUR
AU  - Catanese, Fabrizio
TI  - Algebraic Surfaces and Their Moduli Spaces: Real, Differentiable and Symplectic Structures
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 537
EP  - 558
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a0/
LA  - en
ID  - BUMI_2009_9_2_3_a0
ER  - 
%0 Journal Article
%A Catanese, Fabrizio
%T Algebraic Surfaces and Their Moduli Spaces: Real, Differentiable and Symplectic Structures
%J Bollettino della Unione matematica italiana
%D 2009
%P 537-558
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a0/
%G en
%F BUMI_2009_9_2_3_a0
Catanese, Fabrizio. Algebraic Surfaces and Their Moduli Spaces: Real, Differentiable and Symplectic Structures. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 3, pp. 537-558. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_3_a0/