The Complete Monotonicity of a Function Studied by Miller and Moskowitz
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 449-452
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Let $$S(x) = log(1+x) + \int_{0}^{1} \left[ 1 - \left( \frac{1+t}{2} \right) ^{x} \right] \frac{dt}{\log t} \quad \text{and} \quad F(x) = \log 2 - S(x) \,\, (0 x \in \mathbb{R}).$$ We prove that $F$ is completely monotonic on $(0,\infty)$. This complements a result of Miller and Moskowitz (2006), who proved that $F$ is positive and strictly decreasing on $(0,\infty)$. The sequence $\{ S(k)\}$$(k=1,2,\dots)$ plays a role in information theory.
@article{BUMI_2009_9_2_2_a9,
author = {Alzer, Horst},
title = {The {Complete} {Monotonicity} of a {Function} {Studied} by {Miller} and {Moskowitz}},
journal = {Bollettino della Unione matematica italiana},
pages = {449--452},
year = {2009},
volume = {Ser. 9, 2},
number = {2},
zbl = {1179.26034},
mrnumber = {2537281},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a9/}
}
Alzer, Horst. The Complete Monotonicity of a Function Studied by Miller and Moskowitz. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 449-452. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a9/