The Complete Monotonicity of a Function Studied by Miller and Moskowitz
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 449-452.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $$S(x) = log(1+x) + \int_{0}^{1} \left[ 1 - \left( \frac{1+t}{2} \right) ^{x} \right] \frac{dt}{\log t} \quad \text{and} \quad F(x) = \log 2 - S(x) \,\, (0 x \in \mathbb{R}).$$ We prove that $F$ is completely monotonic on $(0,\infty)$. This complements a result of Miller and Moskowitz (2006), who proved that $F$ is positive and strictly decreasing on $(0,\infty)$. The sequence $\{ S(k)\}$$(k=1,2,\dots)$ plays a role in information theory.
@article{BUMI_2009_9_2_2_a9,
     author = {Alzer, Horst},
     title = {The {Complete} {Monotonicity} of a {Function} {Studied} by {Miller} and {Moskowitz}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {449--452},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {2},
     year = {2009},
     zbl = {1179.26034},
     mrnumber = {2537281},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a9/}
}
TY  - JOUR
AU  - Alzer, Horst
TI  - The Complete Monotonicity of a Function Studied by Miller and Moskowitz
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 449
EP  - 452
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a9/
LA  - en
ID  - BUMI_2009_9_2_2_a9
ER  - 
%0 Journal Article
%A Alzer, Horst
%T The Complete Monotonicity of a Function Studied by Miller and Moskowitz
%J Bollettino della Unione matematica italiana
%D 2009
%P 449-452
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a9/
%G en
%F BUMI_2009_9_2_2_a9
Alzer, Horst. The Complete Monotonicity of a Function Studied by Miller and Moskowitz. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 449-452. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a9/

[1] H. Alzer - C. Berg, Some classes of completely monotonic functions, II, Ramanujan J., 11 (2006), 225-248. | DOI | MR | Zbl

[2] J. Dubourdieu, Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes, Compositio Math., 7 (1939), 96-111. | fulltext EuDML | MR | Zbl

[3] A. R. Miller - I. S. Moskowitz, Difference of sums containing products of binomial coefficients and their logarithms, SIAM Review, 48 (2006), 318-325. | DOI | MR | Zbl

[4] I. S. Moskowitz - R. E. Newman - D. P. Crepeau - A. R. Miller, Covert channels and anonymizing networks, in: Proceedings of the 2003 Workshop on Privacy in the Electronic Society, P. Samarati and P. Syverson, eds., ACM (New York, 2003), 79-88.

[5] D. V. Widder, The Laplace Transform, Princeton Univ. Press (Princeton, 1941). | MR | Zbl