Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2009_9_2_2_a8, author = {S\c{e}dziwy, Stanis{\l}aw}, title = {Periodic {Solutions} of {Scalar} {Differential} {Equations} without {Uniqueness}}, journal = {Bollettino della Unione matematica italiana}, pages = {445--448}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {2}, year = {2009}, zbl = {1178.34045}, mrnumber = {2537280}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a8/} }
TY - JOUR AU - Sȩdziwy, Stanisław TI - Periodic Solutions of Scalar Differential Equations without Uniqueness JO - Bollettino della Unione matematica italiana PY - 2009 SP - 445 EP - 448 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a8/ LA - en ID - BUMI_2009_9_2_2_a8 ER -
Sȩdziwy, Stanisław. Periodic Solutions of Scalar Differential Equations without Uniqueness. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 445-448. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a8/
[1] On a multivalued version of the Sharkovskii Theorem and its application to differential inclusions, Set-Valued Analysis, 10 (2002), 1-14. | DOI | MR
- - ,[2] Period two implies all periods for a class of ODEs: A multivalued map approach, Proceedings of the AMS, 135 (2007), 3187-3191. | DOI | MR | Zbl
- - ,[3] A version of Sharkovskii Theorem for differential equations, Proceedings of the AMS, 133 (2005), 449-453. | DOI | MR | Zbl
- ,[4] Theory of Ordinary Differential Equations, McGraw-Hill (New York, Toronto, London, 1955). | MR | Zbl
- ,[5] Differential Equations, Dynamical Systems, and an Introduction to Chaos, Ed. 2 Acad. Press (N. York, 2003). | MR
- - ,[6] Period three implies chaos, American Mathematical Monthly, 82 (1975), 985-992. | DOI | MR | Zbl
- ,[7] Period two implies chaos for a class of ODEs, Proceedings of the AMS, 135 (2007), 2055-2058. | DOI | MR | Zbl
- ,[8] Old and new results for first order periodic ODEs without uniqueness: a comprehensive study by lower and upper solutions, Advanced Non-linear Studies, 4 (2004), 323-376. | DOI | MR | Zbl
- ,