Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2009_9_2_2_a6, author = {Gouin, Henri and Ruggeri, Tommaso}, title = {The {Hamilton} {Principle} for {Fluid} {Binary} {Mixtures} with two {Temperatures}}, journal = {Bollettino della Unione matematica italiana}, pages = {403--422}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {2}, year = {2009}, zbl = {1173.76054}, mrnumber = {2537278}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a6/} }
TY - JOUR AU - Gouin, Henri AU - Ruggeri, Tommaso TI - The Hamilton Principle for Fluid Binary Mixtures with two Temperatures JO - Bollettino della Unione matematica italiana PY - 2009 SP - 403 EP - 422 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a6/ LA - en ID - BUMI_2009_9_2_2_a6 ER -
Gouin, Henri; Ruggeri, Tommaso. The Hamilton Principle for Fluid Binary Mixtures with two Temperatures. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 403-422. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a6/
[1] Identification of an average temperature and a dynamical pressure in multi-temperature mixture of fluids, Physical Review E, 78 (2008), 016303. | DOI | MR
- ,[2] Thermo-fluid dynamic theory of two-phase flows, Paris, Eyrolles, 1975. | Zbl
,[3] Dynamics of multiphase media, Hemisphere Publ. Corp., New York, 1991.
,[4] Mathematical modeling of two-phase flow, Annual Rev. Fluid Mech., 15 (1983), 261-291.
,[5] Two-phase flow equations for a dilute dispersion of gas bubbles in liquid, J. Fluid Mech., 148 (1984), 301-318. | Zbl
- ,[6] Theory of mixtures, in Continuum Physics, Vol III, A. C. Eringen Ed., Academic Press (London, 1976), 1-127. | MR
,[7] Fluid mechanics, Pergamon Press (London, 1989). | MR
- ,[8] Superfluid hydrodynamics , Elsevier (New York, 1974).
,[9] Theory of superfluidity, Nauka (Moscow, 1971). | MR
,[10] Rational thermodynamics, Series in Modern Applied Mathematics, MacGraw-Hill (New York, 1969). | MR
,[11] Thermodynamics, Interaction of Mechanics and Mathematics Series, Pitman (London, 1985).
,[12] Rational extended thermodynamics, Springer (New York, 1998). | DOI | MR
- ,[13] On the hyperbolic system of a mixture of Eulerian fluids: a comparison between single and multi-temperature models, Math. Meth. Appl. Sci., 30 (2007), 827-849. | DOI | MR | Zbl
- ,[14] A new variational principle for isoenergetic flows, Q. J. Appl. Math., 9 (1952), 421-423. | DOI | MR | Zbl
,[15] Mathematical principles of classical fluid mechanics, Encyclopedia of Physics, VIII/1, S. Flügge Ed., Springer (Berlin, 1960), 125-263.
,[16] Thermodynamic form of the equation of motion for perfect fluids of grade n, Comptes Rendus Acad. Sci. Paris, 305, II (1987), 833-838. | MR | Zbl
,[17] Variational principle involving the stress tensor in elastodynamics, Int. J. Engng. Sci., 24 (1986), 1057-1069. | Zbl
- ,[18] Recent advances. Theories of immiscible and structured mixtures, Int. J. Engng. Sci., 21 (1983), 863-960. | DOI | MR | Zbl
- ,[19] Variational principles of continuum mechanics, Nauka (Moscow, 1983). | MR | Zbl
,[20] Variational principles and two-fluid hydrodynamics of bubbly liquid/ gas mixtures, Physica A, 135 (1986), 455-486. | DOI | MR
,[21] Variational theory of mixtures in continuum mechanics, Eur. J. Mech. B/ Fluids, 9 (1990), 469-491. | MR | Zbl
,[22] A variational principle for two-fluid models, Comptes Rendus Acad. Sci. Paris, 324, II (1997), 483-490. | Zbl
- - ,[23] Mixture of fluids involving entropy gradients and acceleration waves in interfacial layers, Eur. J. Mech. B/Fluids, 24 (2005), 596-613. | DOI | MR | Zbl
- ,[24] Hamilton's principle and Rankine-Hugoniot conditions for general motions of mixtures, Meccanica, 34 (1999), 39-47. | DOI | MR | Zbl
- ,[25] Hyperbolic models of homogeneous two-fluid mixtures, Meccanica, 33 (1998), 161-175. | DOI | MR | Zbl
- - ,[26] From molecular mixtures to suspensions of particles, J. Physique II, 5 (1995), 19-36.
,[27] Relativistic kinetic theory. North-Holland (Amsterdam, 1980). | MR
- - ,[28] Two-phase flow: models and methods, J. Comput. Phys., 56 (1984), 363-409. | DOI | MR | Zbl
- ,[29] Mixture of gases with multi-temperature: Identification of a macroscopic average temperature, in: Proceedings of Workshop Mathematical Physics Models and Engineering Sciences, Liguori Editore (Napoli, 2008), 455-462.
- ,[30] Mixture of gases with multi-temperature: Maxwellian iteration, in: Asymptotic Methods in Non Linear Wave Phenomena, T. Ruggeri and M. Sammartino Eds., World Scientific (Singapore, 2007), 186-194. | DOI | MR | Zbl
- ,[31] A new form of governing equations of fluids arising from Hamilton's principle, Int. J. Engng. Sci., 37 (1999), 1495-1520. | DOI | MR | Zbl
- ,[32] Entropy generation and the survival of protogalaxies in an expanding universe, Astrophys. J., 168 (1971), 175-194.
,