Greedy Algorithms for Adaptive Approximation
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 391-402.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We discuss the performances of greedy algorithms for two problems of numerical approximation. The first one is the best approximation of an arbitrary function by an N-terms linear combination of simple functions adaptively picked within a large dictionary. The second one is the approximation of an arbitrary function by a piecewise polynomial function on an optimally adapted triangulation of cardinality N. Performance is measured in terms of convergence rate with respect to the number of element in the dictionary in the first case and of triangles in the second case.
@article{BUMI_2009_9_2_2_a5,
     author = {Cohen, Albert},
     title = {Greedy {Algorithms} for {Adaptive} {Approximation}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {391--402},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {2},
     year = {2009},
     zbl = {1171.65009},
     mrnumber = {2537277},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a5/}
}
TY  - JOUR
AU  - Cohen, Albert
TI  - Greedy Algorithms for Adaptive Approximation
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 391
EP  - 402
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a5/
LA  - en
ID  - BUMI_2009_9_2_2_a5
ER  - 
%0 Journal Article
%A Cohen, Albert
%T Greedy Algorithms for Adaptive Approximation
%J Bollettino della Unione matematica italiana
%D 2009
%P 391-402
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a5/
%G en
%F BUMI_2009_9_2_2_a5
Cohen, Albert. Greedy Algorithms for Adaptive Approximation. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 391-402. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a5/

[1] V. Babenko - Y. Babenko - A. Ligun - A. Shumeiko, On Asymptotical Behavior of the Optimal Linear Spline Interpolation Error of $C^{2}$ Functions, East J. Approx., 12(1) (2006), 71-101. | MR

[2] A. Barron, Universal approximation bounds for superposition of n sigmoidal functions, IEEE Trans. Inf. Theory 39 (1993), 930-945. | DOI | MR | Zbl

[3] A. Barron - A. Cohen - W. Dahmen - R. Devore, Approximation and learning by greedy algorithms, to appear in Annals of Statistics (2007). | DOI | MR

[4] J. Bergh - J. Löfström, Interpolation spaces, Springer Verlag, Berlin, 1976.

[5] P. Binev - W. Dahmen - R. Devore, Adaptive Finite Element Methods with Convergence Rates, Numerische Mathematik 97 (2004), 219-268. | DOI | MR | Zbl

[6] H. Borouchaki - P. J. Frey - P. L. George - P. Laug - E. Saltel, Mesh generation and mesh adaptivity: theory, techniques, in Encyclopedia of computational mechanics, E. Stein, R. de Borst and T. J. R. Hughes ed., John Wiley & Sons Ltd., 2004. | DOI | MR

[7] L. Chen - P. Sun - J. Xu, Optimal anisotropic meshes for minimizing interpolation error in $L^{p}$-norm, Math. of Comp., 76 (2007), 179-204. | DOI | MR | Zbl

[8] A. Cohen - W. Dahmen - I. Daubechies - R. Devore, Tree-structured approximation and optimal encoding, App. Comp. Harm. Anal., 11 (2001), 192-226. | DOI | MR | Zbl

[9] A. Cohen - N. Dyn - F. Hecht - J. M. Mirebeau, Adaptive multiresolution analysis based on anisotropic triangulations, preprint, Laboratoire J.-L. Lions, 2008. | DOI | MR

[10] A. Cohen - J. M. Mirebeau, Greedy bisection generates optimally adapted triangulations, preprint, Laboratoire J.-L. Lions, 2008. | DOI | MR | Zbl

[11] R. Devore, Nonlinear approximation, Acta Numerica (1997), 51-150. | DOI | MR

[12] R. Devore - V. Temlyakov, Some remarks on greedy algorithms, Advances in Computational Mathematics, 5 (1998), 173-187. | DOI | MR | Zbl

[13] W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124. | DOI | MR | Zbl

[14] A. C. Gilbert - J. A. Tropp, Signal recovery from random measurements via Orthogonal Matching Pursuit, IEEE Trans. Info. Theory, 53 (2007), 4655-4666. | DOI | MR | Zbl

[15] L. K. Jones, A simple lemma on greedy approximation in Hilbert spaces and convergence rates for projection pursuit regression and neural network training, Ann. Stat., 20 (1992), 608-613. | DOI | MR | Zbl

[16] S. V. Konyagin - V. N. Temlyakov, Rate of convergence of Pure greedy Algorithm, East J. Approx. 5 (1999), 493-499. | MR | Zbl

[17] E. D. Livshitz - V. N. Temlyakov, Two lower estimates in greedy approximation, Constr. Approx., 19 (2003), 509-524. | DOI | MR | Zbl

[18] P. Morin - R. Nochetto - K. Siebert, Convergence of adaptive finite element methods, SIAM Review, 44 (2002), 631-658. | DOI | MR | Zbl

[19] V. Temlyakov, Nonlinear methods of approximation, Journal of FOCM, 3 (2003), 33-107. | DOI | MR | Zbl

[20] V. Temlyakov, Greedy algorithms, to appear in Acta Numerica.

[21] R. Verfurth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, 1996. | Zbl