Greedy Algorithms for Adaptive Approximation
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 391-402
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We discuss the performances of greedy algorithms for two problems of numerical approximation. The first one is the best approximation of an arbitrary function by an N-terms linear combination of simple functions adaptively picked within a large dictionary. The second one is the approximation of an arbitrary function by a piecewise polynomial function on an optimally adapted triangulation of cardinality N. Performance is measured in terms of convergence rate with respect to the number of element in the dictionary in the first case and of triangles in the second case.
@article{BUMI_2009_9_2_2_a5,
author = {Cohen, Albert},
title = {Greedy {Algorithms} for {Adaptive} {Approximation}},
journal = {Bollettino della Unione matematica italiana},
pages = {391--402},
year = {2009},
volume = {Ser. 9, 2},
number = {2},
zbl = {1171.65009},
mrnumber = {2537277},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a5/}
}
Cohen, Albert. Greedy Algorithms for Adaptive Approximation. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 391-402. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a5/