A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 371-390.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We present the main existence result for quasistatic crack growth in the model proposed by Dal Maso, Francfort, and Toader, and prove some qualitative properties of the solutions.
@article{BUMI_2009_9_2_2_a4,
     author = {Dal Maso, Gianni and Giacomini, Alessandro and Ponsiglione, Marcello},
     title = {A {Variational} {Model} for {Quasistatic} {Crack} {Growth} in {Nonlinear} {Elasticity:} {Some} {Qualitative} {Properties} of the {Solutions}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {371--390},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {2},
     year = {2009},
     zbl = {1173.74037},
     mrnumber = {2537276},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a4/}
}
TY  - JOUR
AU  - Dal Maso, Gianni
AU  - Giacomini, Alessandro
AU  - Ponsiglione, Marcello
TI  - A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 371
EP  - 390
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a4/
LA  - en
ID  - BUMI_2009_9_2_2_a4
ER  - 
%0 Journal Article
%A Dal Maso, Gianni
%A Giacomini, Alessandro
%A Ponsiglione, Marcello
%T A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions
%J Bollettino della Unione matematica italiana
%D 2009
%P 371-390
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a4/
%G en
%F BUMI_2009_9_2_2_a4
Dal Maso, Gianni; Giacomini, Alessandro; Ponsiglione, Marcello. A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 371-390. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a4/

[1] L. Ambrosio - N. Fusco - D. Pallara, Functions of bounded variations and free discontinuity problems. Clarendon Press, Oxford, 2000. | MR | Zbl

[2] H. Brezis, Convergence in $\mathcal{D}^{\prime}$ and in $L^{1}$ under strict convexity. Boundary value problems for partial differential equations and applications, 43-52, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993. | MR | Zbl

[3] C. Castaing - M. Valadier, Convex analysis and measurable multifunctions. Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. | MR | Zbl

[4] A. Chambolle, A density result in two-dimensional linearized elasticity and applications. Arch. Ration. Mech. Anal., 167 (2003), 211-233. | DOI | MR | Zbl

[5] A. Chambolle - A. Giacomini - M. Ponsiglione, Crack initiation in brittle materials. Arch. Ration. Mech. Anal., 188 (2008), 309-349. | DOI | MR | Zbl

[6] B. Dacorogna, Direct methods in the calculus of variations, Springer-Verlag, Berlin, 1989. | DOI | MR | Zbl

[7] G. Dal Maso - G. A. Francfort - R. Toader, Quasi-static crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal., 176 (2005), 165-225. | DOI | MR | Zbl

[8] G. Dal Maso - R. Toader, A model for the quasistatic growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal., 162 (2002), 101-135. | DOI | MR | Zbl

[9] E. De Giorgi - L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), 199-210. | fulltext EuDML | MR

[10] G. A. Francfort - C. J. Larsen, Existence and convergence for quasistatic evolution in brittle fracture. Comm. Pure Appl. Math., 56 (2003), 1465-1500. | DOI | MR | Zbl

[11] G. A. Francfort - J.-J. Marigo, Revisiting brittle fractures as an energy minimization problem. J. Mech. Phys. Solids, 46 (1998), 1319-1342. | DOI | MR | Zbl

[12] A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163-198.

[13] A. Mainik, Existence results for rate-independent phase transformations in shape-memory alloys. Arch. Ration. Mech. Anal., to appear.

[14] A. Mielke, Evolution of rate-independent systems. In: Evolutionary equations. Vol. II. Edited by C.M. Dafermos and E. Feireisl, 461-559, Handbook of Differential Equations. Elsevier/North-Holland, Amsterdam, 2005. | MR | Zbl

[15] R. T. Rockafellar, Convex analysis. Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J. 1970. | MR

[16] K. Yosida, Functional analysis. Springer, 1965. | MR