An Elliptic Problem with a Lower Order Term Having Singular Behaviour
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 349-370
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We prove the existence of distributional solutions to an elliptic problem with a lower order term which depends on the solution $u$ in a singular way and on its gradient $Du$ with quadratic growth. The prototype of the problem under consideration is $$\begin{cases} - \Delta u + \lambda u = \pm \frac{|Du|^{2}}{|u|^{k}} + f \quad \text{in} \, \Omega, \\ u=0 \text{on} \, \partial \Omega, \end{cases}$$ where $\lambda > 0$, $k > 0$; $f(x) \in L^{\infty}(\Omega)$, $f(x) \ge 0$ (and so $u \ge 0$). If $0 k 1$, we prove the existence of a solution for both the "+" and the "-" signs, while if $k \ge 1$, we prove the existence of a solution for the "+" sign only.
@article{BUMI_2009_9_2_2_a3,
author = {Giachetti, Daniela and Murat, Fran\c{c}ois},
title = {An {Elliptic} {Problem} with a {Lower} {Order} {Term} {Having} {Singular} {Behaviour}},
journal = {Bollettino della Unione matematica italiana},
pages = {349--370},
year = {2009},
volume = {Ser. 9, 2},
number = {2},
zbl = {1173.35469},
mrnumber = {2537275},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a3/}
}
TY - JOUR AU - Giachetti, Daniela AU - Murat, François TI - An Elliptic Problem with a Lower Order Term Having Singular Behaviour JO - Bollettino della Unione matematica italiana PY - 2009 SP - 349 EP - 370 VL - 2 IS - 2 UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a3/ LA - en ID - BUMI_2009_9_2_2_a3 ER -
Giachetti, Daniela; Murat, François. An Elliptic Problem with a Lower Order Term Having Singular Behaviour. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 349-370. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a3/