An Elliptic Problem with a Lower Order Term Having Singular Behaviour
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 349-370.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove the existence of distributional solutions to an elliptic problem with a lower order term which depends on the solution $u$ in a singular way and on its gradient $Du$ with quadratic growth. The prototype of the problem under consideration is $$\begin{cases} - \Delta u + \lambda u = \pm \frac{|Du|^{2}}{|u|^{k}} + f \quad \text{in} \, \Omega, \\ u=0 \text{on} \, \partial \Omega, \end{cases}$$ where $\lambda > 0$, $k > 0$; $f(x) \in L^{\infty}(\Omega)$, $f(x) \ge 0$ (and so $u \ge 0$). If $0 k 1$, we prove the existence of a solution for both the "+" and the "-" signs, while if $k \ge 1$, we prove the existence of a solution for the "+" sign only.
@article{BUMI_2009_9_2_2_a3,
     author = {Giachetti, Daniela and Murat, Fran\c{c}ois},
     title = {An {Elliptic} {Problem} with a {Lower} {Order} {Term} {Having} {Singular} {Behaviour}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {349--370},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {2},
     year = {2009},
     zbl = {1173.35469},
     mrnumber = {2537275},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a3/}
}
TY  - JOUR
AU  - Giachetti, Daniela
AU  - Murat, François
TI  - An Elliptic Problem with a Lower Order Term Having Singular Behaviour
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 349
EP  - 370
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a3/
LA  - en
ID  - BUMI_2009_9_2_2_a3
ER  - 
%0 Journal Article
%A Giachetti, Daniela
%A Murat, François
%T An Elliptic Problem with a Lower Order Term Having Singular Behaviour
%J Bollettino della Unione matematica italiana
%D 2009
%P 349-370
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a3/
%G en
%F BUMI_2009_9_2_2_a3
Giachetti, Daniela; Murat, François. An Elliptic Problem with a Lower Order Term Having Singular Behaviour. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 349-370. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a3/

[1] D. Arcoya - S. Barile - P. J. Martínez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition, J. Math. Anal. Appl., 350 (2009), 401-408. | DOI | MR | Zbl

[2] D. Arcoya - J. Carmona - T. Leonori - P. J. Martínez-Aparicio - L. Orsina - F. Petitta, Quadratic quasilinear equations with general singularities, J. Differential Equations (2009).

[3] D. Arcoya - J. Carmona - P. J. Martínez-Aparicio, Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms, Adv. Nonlinear Stud., 7 (2007), 299-317. | DOI | MR | Zbl

[4] D. Arcoya - P. J. Martínez-Aparicio, Quasilinear equations with natural growth, Rev. Mat. Iberoamericana, 24 (2008), 597-616. | fulltext EuDML | DOI | MR | Zbl

[5] L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM - Control, Optimisation and Calculus of Variations, 14 (2008), 411-426. | fulltext EuDML | DOI | MR | Zbl

[6] L. Boccardo - F. Murat - J.-P. Puel, Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique, in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. IV, ed. by H. Brezis & J.-L. Lions, Res. Notes in Math., 84 (1983), Pitman, Boston, 19-73. | MR

[7] L. Boccardo - F. Murat - J.-P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Ann. Scuola Norm. Sup. Pisa, 11 (1984), 213-235. | fulltext EuDML | MR | Zbl

[8] L. Boccardo - F. Murat - J.-P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., 152 (1988), 183-196. | DOI | MR | Zbl

[9] L. Boccardo - F. Murat - J.-P. Puel, $L^{\infty}$-estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal., 23 (1992), 326-333. | DOI | MR | Zbl

[10] A. Dall'Aglio - D. Giachetti - J.-P. Puel, Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl., 181 (2002), 407-426. | DOI | MR | Zbl

[11] V. Ferone - F. Murat, Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, in Equations aux dérivées partielles et applications, articles dédiés à Jacques-Louis Lions, (1998), Gauthier-Villars, Paris, 497-515. | MR | Zbl

[12] V. Ferone - F. Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. Th. Meth. Appl. Series A, 42 (2000), 1309-1326. | DOI | MR | Zbl

[13] V. Ferone - F. Murat, Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces, to appear. | DOI | MR | Zbl

[14] D. Giachetti - G. Maroscia, Porous medium type equations with a quadratic gradient term, Boll. U.M.I. sez. B, 10 (2007), 753-759. | fulltext EuDML | MR | Zbl

[15] D. Giachetti - G. Maroscia, Existence results for a class of porous medium type equations with a quadratic gradient term, J. Evol. Eq., 8 (2008), 155-188. | DOI | MR | Zbl

[16] P. J. Martínez-Aparicio, Singular quasilinear equations with quadratic gradient, to appear.

[17] A. Porretta - S. Segura De León, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl., 85 (2006), 465-492. | DOI | MR | Zbl