Some Nonlinear Evolution Problems in Mixed Form
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 303-320.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This work deals with some abstract equations, either linear or nonlinear, arising from the so-called mixed formulation of PDEs of elliptic and parabolic type. This class of variational formulations turns out to be particularly relevant in connection with the development of finite elements approximations. We prove the well-posedness of both the stationary and the evolution problems.
@article{BUMI_2009_9_2_2_a0,
     author = {Stefanelli, Ulisse and Visintin, Augusto},
     title = {Some {Nonlinear} {Evolution} {Problems} in {Mixed} {Form}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {303--320},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {2},
     year = {2009},
     zbl = {1172.35303},
     mrnumber = {2537272},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a0/}
}
TY  - JOUR
AU  - Stefanelli, Ulisse
AU  - Visintin, Augusto
TI  - Some Nonlinear Evolution Problems in Mixed Form
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 303
EP  - 320
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a0/
LA  - en
ID  - BUMI_2009_9_2_2_a0
ER  - 
%0 Journal Article
%A Stefanelli, Ulisse
%A Visintin, Augusto
%T Some Nonlinear Evolution Problems in Mixed Form
%J Bollettino della Unione matematica italiana
%D 2009
%P 303-320
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a0/
%G en
%F BUMI_2009_9_2_2_a0
Stefanelli, Ulisse; Visintin, Augusto. Some Nonlinear Evolution Problems in Mixed Form. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 2, pp. 303-320. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_2_a0/

[AL83] H. W. Alt - S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 3 (1983), 311-341. | fulltext EuDML | DOI | MR | Zbl

[Arn81] D. N. Arnold, Discretization by finite elements of a model parameter dependent problem, Numer. Math., 37, 3 (1981), 405-421. | fulltext EuDML | DOI | MR | Zbl

[AH58] K. J. Arrow - L. Hurwicz, Gradient methods for concave programming: local results. In: Studies in linear and non-linear programming (K. J. Arrow, L. Hurwicz, H. Uzawa, Eds.). Stanford University Press, Stanford (1958), 117-126. | MR

[Bab73] I BABUŠKA, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1972/73), 179-192. | fulltext EuDML | DOI | MR

[Bar76] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing, Leyden, 1976. | MR | Zbl

[BF91] F. Brezzi - M. Fortin, Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics (Springer-Verlag, New York, 1991). | DOI | MR | Zbl

[BG04] D. Boffi - L. Gastaldi, Analysis of finite element approximation of evolution problems in mixed form, SIAM J. Numer. Anal., 42, 4 (2004), 1502-1526 (electronic). | DOI | MR | Zbl

[BN90] J. Baranger - K. Najib, Analyse numérique des écoulements quasi-newtoniens dont la viscosité obéit à la loi puissance ou la loi de carreau, Numer. Math., 58, 1 (1990), 35-49. | fulltext EuDML | DOI | MR | Zbl

[Bre71] H. Brezis, Monotonicity methods in Hilbert spaces and some application to nonlinear partial differential equations. In Contrib. to nonlin. functional analysis. Proc. Sympos. Univ. Wisconsin, Madison (Academic Press, New York, 1971), 101-156. | MR

[Bre73] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Number 5 in North Holland Math. Studies. North-Holland, Amsterdam, 1973. | MR | Zbl

[Bre74] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. FrancËaise Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (R-2) (1974), 129-151. | fulltext EuDML | MR | Zbl

[CFA06] J. M. Cascón - L. Ferragut - M. I. Asensio, Space-time adaptive algorithm for the mixed parabolic problem, Numer. Math., 103, 3 (2006), 367-392. | DOI | MR | Zbl

[CHZ03] P. Ciarlet Jr. - J. Huang - J. Zou, Some observations on generalized saddle-point problems, SIAM J. Matrix Anal. Appl., 25, 1 (2003), 224-236 (electronic). | DOI | MR | Zbl

[CV90] P. Colli - A. Visintin, On a class of doubly nonlinear evolution problems, Comm. Partial Differential Equations, 15, 5 (1990), 737-756. | DOI | MR | Zbl

[CW06] S. H. Christiansen - R. Winther, On constraint preservation in numerical simulations of Yang-Mills equations, SIAM J. Sci. Comput., 28, 1 (2006), 75-101 (electronic). | DOI | MR | Zbl

[DS81] E. Dibenedetto - R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12, 5 (1981), 731-751. | DOI | MR | Zbl

[Gat02] G. N. Gatica, Solvability and Galerkin approximations of a class of non-linear operator equations, Z. Anal. Anwendungen, 21, 3 (2002), 761-781. | DOI | MR | Zbl

[GM75] R. Glowinski - A. Marrocco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle-RAIRO Analyse Numérique, 9 (R-2) (1975), 41-76. | fulltext EuDML | MR | Zbl

[HR82] J. G. Heywood - R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19 (2) (1982), 275-311. | DOI | MR | Zbl

[JT81] C. Johnson - V. Thomée, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér., 15 (1) (1981), 41-78. | fulltext EuDML | MR

[KSWK06] J. Korsawe - G. Starke - W. Wang - O. Kolditz, Finite element analysis of poro-elastic consolidation in porous media: standard and mixed approaches, Comput. Methods Appl. Mech. Engrg., 195 (9-12) (2006), 1096-1115. | DOI | MR

[Le82] P. Le Tallec, Existence and approximation results for nonlinear mixed problems: application to incompressible finite elasticity, Numer. Math., 38 (3) (1981/82), 365-382. | fulltext EuDML | DOI | MR | Zbl

[MF01] H. Manouzi - M. Farhloul, Mixed finite element analysis of a non-linear three-fields Stokes model, IMA J. Numer. Anal., 21 (1) (2001), 143-164. | DOI | MR | Zbl

[Pan98] A. K. Pani, An $H^{1}$-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal., 35 (2) (1998), 712-727 (electronic). | DOI | MR | Zbl

[Qua80] A. Quarteroni, Mixed approximations of evolution problems, Comput. Methods Appl. Mech. Engrg., 24 (2) (1980), 137-163. | DOI | MR | Zbl

[Rud91] W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics. McGraw-Hill Inc., New York, second edition, 1991. | MR

[Sch77] B. Scheurer, Existence et approximation de points selles pour certains problèmes non linéaires, RAIRO Anal. Numér., 11 (4) (1977), 369-400, iv. | fulltext EuDML | DOI | MR | Zbl

[Sho97] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, volume 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997. | MR | Zbl

[SS04] R. E. Showalter - U. Stefanelli, Diffusion in poro-plastic media, Math. Methods Appl. Sci., 27 (18) (2004), 2131-2151. | DOI | MR | Zbl

[Tem77] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam, 1977. Studies in Mathematics and its Applications, Vol. 2. | MR | Zbl

[Tho06] V. Thomée, Galerkin finite element methods for parabolic problems, volume 25 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, second edition, 2006. | MR

[Uza58] H. Uzawa, Gradient methods for concave programming: global stability in the strictly concave case. In: Studies in linear and non-linear programming (K.J. Arrow, L. Hurwicz, H. Uzawa, Eds.). Stanford University Press, Stanford 1958, 127-132. | MR

[Yos80] K. Yosida, Functional analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, sixth edition, 1980. | MR