Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2009_9_2_1_a4, author = {Azzollini, A. and Pomponio, A.}, title = {A {Note} on the {Ground} {State} {Solutions} for the {Nonlinear} {Schr\"odinger-Maxwell} {Equations}}, journal = {Bollettino della Unione matematica italiana}, pages = {93--104}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {1}, year = {2009}, zbl = {1173.35674}, mrnumber = {2493646}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a4/} }
TY - JOUR AU - Azzollini, A. AU - Pomponio, A. TI - A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations JO - Bollettino della Unione matematica italiana PY - 2009 SP - 93 EP - 104 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a4/ LA - en ID - BUMI_2009_9_2_1_a4 ER -
%0 Journal Article %A Azzollini, A. %A Pomponio, A. %T A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations %J Bollettino della Unione matematica italiana %D 2009 %P 93-104 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a4/ %G en %F BUMI_2009_9_2_1_a4
Azzollini, A.; Pomponio, A. A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a4/
[1] Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345, (2008), 90-108. | DOI | MR | Zbl
- ,[2] An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. | DOI | MR
- ,[3] Solitons and the electromagnetic field, Math. Z., 232, (1999), 73-102. | DOI | MR | Zbl
- - - ,[4] Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134, (2004), 893-906. | DOI | MR | Zbl
- ,[5] Multiple solutions to some singular nonlinear Schrödinger equations, Electron. J. Differ. Equ. 2001, 9, (2001), 1-14. | fulltext EuDML | MR
,[6] The concentration-compactness principle in the calculus of variation. The locally compact case. Part I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, (1984), 109-145. | fulltext EuDML | MR | Zbl
,[7] The concentration-compactness principle in the calculus of variation. The locally compact case. Part II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, (1984), 223-283. | fulltext EuDML | MR | Zbl
,[8] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, (1992), 270-291. | DOI | MR
,[9] The Schrödinger-Poisson equation under the effect of a nonlinear local term, Journ. Func. Anal., 237, (2006), 655-674. | DOI | MR | Zbl
,[10] Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst., 18, (2007), 809-816. | DOI | MR
- ,[11] Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. | DOI | MR
,