A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 93-104.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we study the nonlinear Schrödinger-Maxwell equations $$\begin{cases} - \Delta u + V(x) u + \phi u= |u|^{p-1} u \quad \text{in} \,\, \mathbb{R}^{3}, \\ - \Delta \phi = u^{2} \text{in} \,\, \mathbb{R}^{3}.\end{cases}$$ If $V$ is a positive constant, we prove the existence of a ground state solution $(u,\phi)$ for $2 p 5$. The non-constant potential case is treated for $3 p 5$, and $V$ possibly unbounded below.
@article{BUMI_2009_9_2_1_a4,
     author = {Azzollini, A. and Pomponio, A.},
     title = {A {Note} on the {Ground} {State} {Solutions} for the {Nonlinear} {Schr\"odinger-Maxwell} {Equations}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {93--104},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1173.35674},
     mrnumber = {2493646},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a4/}
}
TY  - JOUR
AU  - Azzollini, A.
AU  - Pomponio, A.
TI  - A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 93
EP  - 104
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a4/
LA  - en
ID  - BUMI_2009_9_2_1_a4
ER  - 
%0 Journal Article
%A Azzollini, A.
%A Pomponio, A.
%T A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations
%J Bollettino della Unione matematica italiana
%D 2009
%P 93-104
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a4/
%G en
%F BUMI_2009_9_2_1_a4
Azzollini, A.; Pomponio, A. A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a4/

[1] A. Azzollini - A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345, (2008), 90-108. | DOI | MR | Zbl

[2] V. Benci - D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293. | DOI | MR

[3] V. Benci - D. Fortunato - A. Masiello - L. Pisani, Solitons and the electromagnetic field, Math. Z., 232, (1999), 73-102. | DOI | MR | Zbl

[4] T. D'Aprile - D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134, (2004), 893-906. | DOI | MR | Zbl

[5] M. Lazzo, Multiple solutions to some singular nonlinear Schrödinger equations, Electron. J. Differ. Equ. 2001, 9, (2001), 1-14. | fulltext EuDML | MR

[6] P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. Part I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, (1984), 109-145. | fulltext EuDML | MR | Zbl

[7] P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. Part II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, (1984), 223-283. | fulltext EuDML | MR | Zbl

[8] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, (1992), 270-291. | DOI | MR

[9] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, Journ. Func. Anal., 237, (2006), 655-674. | DOI | MR | Zbl

[10] Z. Wang - H. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst., 18, (2007), 809-816. | DOI | MR

[11] M. Willem, Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. | DOI | MR