Spazi di moduli di fasci aritmeticamente Cohen-Macaulay su varietà di Fano della serie principale
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 71-91.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In the first part of the paper we complete the classification of the arithmetical Cohen-Macaulay vector bundles of rank 2 on a smooth prime Fano threefold. In the second part, we study some moduli spaces of these vector bundles, using the decomposition of the derived category of $X$ provided by Kuznetsov, when the genus of $X$ is 7 or 9. This allows to prove that such moduli spaces are birational to Brill-Noether varieties of vector bundles on a smooth projective curve $\Gamma$. When the second Chern class is low we are able to give a more precise description of the moduli space of rank-2 semistable sheaves with fixed Chern classes $\mathbf{M}_{X}(2, c_{1}, c_{2})$. If $g = 7$, we show that the moduli space $\mathbf{M}_{X}(2, 1, 6)$ is isomorphic to a smooth irreducible Brill-Noether variety of dimension 3. Moreover the set of vector bundles contained in $\mathbf{M}_{X}(2, 0, 4)$ is smooth irreducible of dimension 5. If $g = 9$, we prove that $\mathbf{M}_{X}(2, 1, 7)$ is isomorphic to the blow-up of $\operatorname{Pic}(\Gamma)$, where $\Gamma$ is a plane smooth quartic. If $g = 12$, an open set of $\mathbf{M}_{X}(2, 1, d)$ can be described as a quotient with respect to the action of a semisimple group in terms of monads.
@article{BUMI_2009_9_2_1_a3,
     author = {Brambilla, Maria Chiara and Faenzi, Daniele},
     title = {Spazi di moduli di fasci aritmeticamente {Cohen-Macaulay} su variet\`a di {Fano} della serie principale},
     journal = {Bollettino della Unione matematica italiana},
     pages = {71--91},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1180.14044},
     mrnumber = {2493645},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a3/}
}
TY  - JOUR
AU  - Brambilla, Maria Chiara
AU  - Faenzi, Daniele
TI  - Spazi di moduli di fasci aritmeticamente Cohen-Macaulay su varietà di Fano della serie principale
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 71
EP  - 91
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a3/
LA  - it
ID  - BUMI_2009_9_2_1_a3
ER  - 
%0 Journal Article
%A Brambilla, Maria Chiara
%A Faenzi, Daniele
%T Spazi di moduli di fasci aritmeticamente Cohen-Macaulay su varietà di Fano della serie principale
%J Bollettino della Unione matematica italiana
%D 2009
%P 71-91
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a3/
%G it
%F BUMI_2009_9_2_1_a3
Brambilla, Maria Chiara; Faenzi, Daniele. Spazi di moduli di fasci aritmeticamente Cohen-Macaulay su varietà di Fano della serie principale. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 71-91. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a3/

[AK80] Allen B. Altman - Steven L. Kleiman, Compactifying the Picard scheme, Adv. in Math. 35, no. 1 (1980), 50-112. | DOI | MR | Zbl

[AC00] Enrique Arrondo - Laura Costa, Vector bundles on Fano 3-folds without intermediate cohomology, Comm. Algebra, 28, no. 8 (2000), 3899-3911. | DOI | MR | Zbl

[AF06] Enrique Arrondo - Daniele Faenzi, Vector bundles with no intermediate cohomology on Fano threefolds of type $V_{22}$ , Pacific J. Math., 225, no. 2 (2006), 201-220. | DOI | MR | Zbl

[AHDM78] Michael F. Atiyah - Nigel J. Hitchin - Vladimir G. Drinfel'D - Yuri I. Manin, Construction of instantons, Phys. Lett. A, 65, no. 3 (1978), 185-187. | DOI | MR | Zbl

[BH78] Wolf Barth - Klaus Hulek, Monads and moduli of vector bundles, Manuscripta Math. 25, no. 4 (1978), 323-347. | fulltext EuDML | DOI | MR | Zbl

[BF07a] Maria Chiara Brambilla - Daniele Faenzi, Vector bundles on Fano threefolds of genus 7 and Brill-Noether loci, Preprint, 2007. | DOI | MR | Zbl

[BF08a] Maria Chiara Brambilla - Daniele Faenzi, Moduli spaces of rank 2 ACM bundles on prime Fano threefolds, Arxiv preprint, http://arxiv.org/abs/ 0806.2265, 2008. | DOI | MR | Zbl

[BF08b] Maria Chiara Brambilla - Daniele Faenzi, Rank 2 ACM bundles with trivial determinant on Fano threefolds of genus 7, Preprint, 2008. | DOI | MR | Zbl

[BF08c] Maria Chiara Brambilla - Daniele Faenzi, Rank 2 stable sheaves with odd determinant on Fano threefolds of genus 9, Preprint, 2008. | Zbl

[BGS87] Ragnar-Olaf Buchweitz - Gert-Martin Greuel - Frank-Olaf Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math., 88, no. 1 (1987), 165-182. | fulltext EuDML | DOI | MR

[CDH05] Marta Casanellas - Elena Drozd - Robin Hartshorne, Gorenstein liaison and ACM sheaves, J. Reine Angew. Math., 584 (2005), 149-171. | DOI | MR

[CH04] Marta Casanellas - Robin Hartshorne, Gorenstein biliaison and ACM sheaves, J. Algebra, 278, no. 1 (2004), 314-341. | DOI | MR

[Dru00] Stéphane Druel, Espace des modules des faisceaux de rang 2 semi-stables de classes de Chern $c_1 = 0$, $c_2 = 2$ et $c_3 = 0$ sur la cubique de $\mathbf{P}^4$, Internat. Math. Res. Notices, no. 19 (2000), 985-1004. | DOI | MR

[EH88] David Eisenbud - Jürgen Herzog, The classification of homogeneous Cohen-Macaulay rings of finite representation type, Math. Ann., 280, no. 2 (1988), 347-352. | fulltext EuDML | DOI | MR | Zbl

[Fae07] Daniele Faenzi, Bundles over Fano threefolds of type $V_{22}$ , Ann. Mat. Pura Appl. (4) 186, no. 1 (2007), 1-24. | DOI | MR | Zbl

[Fan37] Gino Fano, Sulle varietà a tre dimensioni a curve-sezioni canoniche, Mem. R. Acad. D'Italia, 8, (1937), 23-64. | Zbl

[GLN06] Laurent Gruson - Fatima Laytimi - Donihakkalu S. Nagaraj, On prime Fano threefolds of genus 9, Internat. J. Math., 17, no. 3 (2006), 253-261. | DOI | MR | Zbl

[Gor90] Alexei L. Gorodentsev, Exceptional objects and mutations in derived categories, Helices and vector bundles, London Math. Soc. Lecture Note Ser., vol. 148, Cambridge Univ. Press, Cambridge, 1990, pp. 57-73. | DOI | MR

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. | MR

[HL97] Daniel Huybrechts - Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. | DOI | MR | Zbl

[Hor64] Geoffrey Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14 (1964), 689-713. | DOI | MR | Zbl

[Ili03] Atanas Iliev, The $Sp_3$-Grassmannian and duality for prime Fano threefolds of genus 9, Manuscripta Math., 112, no. 1 (2003), 29-53. | DOI | MR | Zbl

[IM06] Atanas Iliev - Laurent Manivel, Prime Fano Threefolds and Integrable Systems, Available at http://www.arxiv.org/abs/math.AG/0606211, 2006. | DOI | MR | Zbl

[IM07] Atanas Iliev - Laurent Manivel, Pfaffian lines and vector bundles on Fano threefolds of genus 8, J. Algebraic Geom., 16, no. 3 (2007), 499-530. | DOI | MR | Zbl

[IM00] Atanas Iliev - Dimitri Markushevich, The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, Doc. Math., 5 (2000), 23-47 (electronic). | fulltext EuDML | MR | Zbl

[IM04a] Atanas Iliev - Dimitri Markushevich, Elliptic curves and rank-2 vector bundles on the prime Fano threefold of genus 7, Adv. Geom., 4, no. 3 (2004), 287-318. | fulltext EuDML | DOI | MR | Zbl

[IM04b] Atanas Iliev - Dimitri Markushevich, Parametrization of $\operatorname{Sing}(\Theta)$ for a Fano 3-fold of Genus 7 by Moduli of Vector Bundles, Available at http://www.arxiv.org/abs/math.AG/0403122, 2004. | DOI | MR | Zbl

[IR05] Atanas Iliev - Kristian Ranestad, Geometry of the Lagrangian Gras- smannian $\mathbf{LG}(3, 6)$ with applications to Brill-Noether loci, Michigan Math. J. 53, no. 2 (2005), 383-417. | DOI | MR | Zbl

[IP99] Vasilii A. Iskovskikh - Yuri. G. Prokhorov, Fano varieties, Algebraic geometry, V, Encyclopaedia Math. Sci., vol. 47, Springer, Berlin, 1999, pp. 1-247. | MR

[Isk77] Vasilii A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat., 41, no. 3 (1977), 516-562, 717. | MR

[Isk78] Vasilii A. Iskovskih, Fano threefolds. II, Izv. Akad. Nauk SSSR Ser. Mat., 42, no. 3 (1978), 506-549, English translation in Math. U.S.S.R. Izvestija, 12, no. 3 (1978), 469-506 (translated by Miles Reid). | MR

[KnoÈ87] Horst Knoèrrer, Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math. 88, no. 1 (1987), 153-164. | fulltext EuDML | DOI | MR

[Kuz05] Alexander G. Kuznetsov, Derived categories of the Fano threefolds $V_{12}$, Mat. Zametki, 78, no. 4 (2005), 579-594, English translation in Math. Notes, 78, no. 3-4 (2005), 537-550. | DOI | MR

[Kuz06] Alexander G. Kuznetsov, Hyperplane sections and derived categories, Izv. Ross. Akad. Nauk Ser. Mat., 70, no. 3 (2006), 23-128, Available at http://www.arxiv.org/abs/math.AG/0503700. | DOI | MR | Zbl

[Mad02] Carlo Madonna, ACM vector bundles on prime Fano threefolds and complete intersection Calabi-Yau threefolds, Rev. Roumaine Math. Pures Appl. 47, no. 2 (2002), 211-222 (2003). | MR | Zbl

[Mer01] Vincent Mercat, Fibrés stables de pente 2, Bull. London Math. Soc. 33, no. 5 (2001), 535-542. | DOI | MR

[MU83] Shigeru Mukai - Hiroshi Umemura, Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, 490-518. | DOI | MR

[Muk88] Shigeru Mukai, Curves, $K3$ surfaces and Fano 3-folds of genus $\leq 10$, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, 357-377. | MR

[Muk89] Shigeru Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U.S.A., 86, no. 9 (1989), 3000-3002. | DOI | MR | Zbl

[Muk95] Shigeru Mukai, Curves and symmetric spaces. I, Amer. J. Math., 117, no. 6 (1995), 1627-1644. | DOI | MR | Zbl

[Ott89] Giorgio Ottaviani, Some extensions of Horrocks criterion to vector bundles on Grassmannians and quadrics, Ann. Mat. Pura Appl. (4) 155 (1989), 317-341. | DOI | MR | Zbl

[Pro90] Yuri G. Prokhorov, Exotic Fano varieties, Vestnik Moskov. Univ. Ser. I Mat. Mekh., no. 3 (1990), 34-37, 111. | MR

[Tan92] Xiao Jiang Tan, Some results on the existence of rank two special stable vector bundles, Manuscripta Math. 75, no. 4 (1992), 365-373. | fulltext EuDML | DOI | MR | Zbl

[TiB91a] Montserrat Teixidor I Bigas, Brill-Noether theory for stable vector bundles, Duke Math. J. 62, no. 2 (1991), 385-400. | DOI | MR | Zbl

[TiB91b] Montserrat Teixidor I Bigas, Brill-Noether theory for vector bundles of rank 2, Tohoku Math. J., (2) 43, no. 1 (1991), 123-126. | DOI | MR | Zbl