Global Lipschitz Continuity of Solutions to Parameterized Variational Inequalities
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 45-69.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The question of Lipschitz continuity of solutions to parameterized variational inequalities with perturbed constraint sets is considered. Under the sole Lipschitz continuity assumption on data, a Lipschitz continuity result is proved which, in particular, holds for variational inequalities modeling evolutionary network equilibrium problems. Moreover, in view of real-life applications, a long-term memory is introduced and the corresponding variational inequality model is discussed.
@article{BUMI_2009_9_2_1_a2,
     author = {Maugeri, Antonino and Scrimali, Laura},
     title = {Global {Lipschitz} {Continuity} of {Solutions} to {Parameterized} {Variational} {Inequalities}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {45--69},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1170.49011},
     mrnumber = {2493644},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a2/}
}
TY  - JOUR
AU  - Maugeri, Antonino
AU  - Scrimali, Laura
TI  - Global Lipschitz Continuity of Solutions to Parameterized Variational Inequalities
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 45
EP  - 69
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a2/
LA  - en
ID  - BUMI_2009_9_2_1_a2
ER  - 
%0 Journal Article
%A Maugeri, Antonino
%A Scrimali, Laura
%T Global Lipschitz Continuity of Solutions to Parameterized Variational Inequalities
%J Bollettino della Unione matematica italiana
%D 2009
%P 45-69
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a2/
%G en
%F BUMI_2009_9_2_1_a2
Maugeri, Antonino; Scrimali, Laura. Global Lipschitz Continuity of Solutions to Parameterized Variational Inequalities. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 45-69. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a2/

[1] A. Arós - M. Sofonea - J. M. Viaño, A class of evolutionary variational inequalities with Volterra-type term, Math. Models Methods Appl. Sci., 14, No. 4 (2004), 557-577. | DOI | MR | Zbl

[2] A. Barbagallo, Regularity results for evolutionary nonlinear variational and quasi-variational inequalities with applications to dynamic equilibrium problems, J. Global Optim., 40, No. 1-3 (2008). | DOI | MR | Zbl

[3] L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Sitzber. Kaiserl. Akad. Wiss. Wien, Math.-Naturw. Kl., 70, Sect. II (1874), 275-300.

[4] M. J. Beckman - J. P. Wallace, Continuous lags and the stability of market equilibrium, Economica, New Series, 36, No. 141 (1969), 58-68.

[5] L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Ann. Phys. u. Chem., 5 (1878), 430-432. | Zbl

[6] J. F. Bonnans - A. Shapiro, Perturbation analysis of optimization problems, Springer, New York (2000). | DOI | MR | Zbl

[7] B. D. Coleman - W. Noll, Foundations of linear viscoelasticity, Rev. of Modern Physics, 33, No. 2 (1961), 239-249. | DOI | MR | Zbl

[8] P. Daniele - A. Maugeri - W. Oettli, Time-dependent traffic equilibria, J. Optim. Theory Appl., 103, No. 3 (1999), 543-554. | DOI | MR | Zbl

[9] P. Daniele - A. Maugeri, Variational inequalities and discrete and continuum models of network equilibrium problems, Math. Comput. Model., 35 (2002), 689-708. | DOI | MR | Zbl

[10] P. DANIELE - F. GIANNESSI - A. MAUGERI (Eds.), Equilibrium problems and variational models, Kluwer Academic Publishers (2003). | DOI | MR

[11] P. Daniele, Dynamic networks and evolutionary variational inequalities, Edward Elgar Publishing (2006). | MR | Zbl

[12] P. Daniele - S. Giuffrè, General infinite dimensional duality and applications to evolutionary network equilibrium problems, Optim. Lett., 1, No. 3 (2007), 227-243. | DOI | MR | Zbl

[13] P. Daniele - S. Giuffrè - G. Idone - A. Maugeri, Infinite dimensional duality and applications, Math. Ann., 339, No. 1 (2007), 221-239. | DOI | MR | Zbl

[14] F. Facchinei - J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, Springer, New York (2003). | MR | Zbl

[15] A. V. Fiacco - G. P. Mccormick, Nonlinear programming: sequential unconstrained minimization techniques, Wiley, New York (1968). | MR | Zbl

[16] A. V. Fiacco, Sensitivity analysis for nonlinear programming using penality methods, Math. Program., 10 (1976), 287-311. | DOI | MR | Zbl

[17] A. V. Fiacco, An introduction to sensitivity and stability analysis in Nonlinear programming, Academic Press, New York (1983). | MR | Zbl

[18] G. Fichera, Integro-differential problems of hereditary elasticity, Atti Sem. Mat. Fis. Univ. Modena, XXVI (1977), 363-370. | MR | Zbl

[19] F. GIANNESSI - A. MAUGERI (Eds.), Variational inequalities and network equilibrium problems, Plenum Publishing, New York (1995). | DOI | MR

[20] F. GIANNESSI - A. MAUGERI - P. PARDALOS (Eds.), Equilibrium problems: non-smooth optimization and variational inequality models, Kluwer Academic Publishers, Dordrecht, The Netherlands (2001). | MR

[21] F. Giannessi - A. Maugeri, Preface [Special issue on the Proeceedings of the First AMS-UMI Joint Meeting], J. Global Optim., 28, No. 3-4 (2004). | DOI | MR

[22] F. GIANNESSI - A. MAUGERI (Eds.), Variational inequalities and applications, Springer, New York (2005).

[23] J. Gwinner, Time-dependent variational inequalities. Some recent trends. In Daniele P., Giannessi F. and Maugeri A. (Eds.), Equilibrium problems and variational models, Academic Publishers, Dordrecht, The Netherlands (2003), 225-264. | DOI | MR | Zbl

[24] J. Heinonen, Lectures on Lipschitz analysis. In Lectures at the 14th Jyväskylä Summer School (August, 2004). | MR | Zbl

[25] J. Jahn, Introduction to the theory of nonlinear optimization, Springer-Verlag, Berlin, Germany (1996). | DOI | MR | Zbl

[26] D. Kinderleher - G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York (1980). | MR

[27] J. Kyparisis, Uniqueness and differentiability of solutions of parametric nonlinear complementarity problems, Math. Program., 36 (1986), 105-113. | DOI | MR | Zbl

[28] J. Kyparisis, Solution differentiability for variational inequalities, Math. Program., 48 (1990), 285-301. | DOI | MR | Zbl

[29] J. Kyparisis, Sensitivity analysis for variational inequalities and nonlinear complementarity problems, Ann. Oper. Res., 27 (1990), 143-174. | DOI | MR | Zbl

[30] J. L. Lions - G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 22 (1967) 493-519. | DOI | MR

[31] A. Maugeri, Variational and quasi-variational inequalities and applications to optmization problems in networks, Boll. Un. Mat. Ital. B, 7, No. 4 (1990), 327-343. | MR | Zbl

[32] A. Maugeri, Dynamic Models and generalized equilibrium problems. In Giannessi F. (Ed.), New Trends in Mathematical Programming, Kluwer Academic Publishers (1998), 191-202. | DOI | MR | Zbl

[33] A. Maugeri - C. Vitanza, Time-dependent equilibrium problems. In Migdalos A., Pardalos P. and Pitsoulis L. (Eds.), Pareto Optimality Game Theory and Equilibria, Springer (2008), 505-524. | DOI | MR | Zbl

[34] B. Mordukhovich, Variational analysis and generalized differentiation (Springer-Verlag , 2006). | MR

[35] Y. Qui - T. L. Magnanti, Sensitivity analysis for variational inequalities, Math. Oper. Res., 17 (1992), 61-76. | DOI | MR | Zbl

[36] S. M. Robinson, Some continuity properties of polyhedral multifunctions, Math. Programming Stud., 14 (1981), 206-214. | DOI | MR | Zbl

[37] S. M. Robinson, Generalized equations and their solutions, part II: applications to nonlinear programming, Math. Programming Stud., 19 (1982), 200-221. | DOI | MR | Zbl

[38] S. M. Robinson, Implicit B-Differentiability in generalized equations, Technical Summary Report 2854, Mathematics Research center, University of Wisconsin, Madison, WI (1985).

[39] S. M. Robinson - S. Lu, Solution continuity in variational conditions, J. Global Optim., 40, No. 1-3 (2008). | DOI | MR | Zbl

[40] L. Scrimali, Quasi-variational inequalities in transportation networks, Math. Models Methods Appl. Sci., 14, No. 10 (2004), 1541-1560. | DOI | MR | Zbl

[41] L. Scrimali, The financial equilibrium problem with implicit budget constraints, Cent. Eur. J. Oper. Res., 16, No. 2 (2008), 191-203. | DOI | MR | Zbl

[42] L. Scrimali, A solution differentiability result for evolutionary quasi-variational inequalities, J. Global Optim., 40, No. 1-3 (2008). | DOI | MR | Zbl

[43] A. Shapiro, Sensitivity analysis of nonlinear programs and differentiability properties of metric projections, SIAM J. Control Optim., 26 (1988), 628-645. | DOI | MR | Zbl

[44] A. Shapiro, Sensitivity analysis of parameterized variational inequalities, Math. Oper. Res., 30, No. 1 (2005), 109-126. | DOI | MR | Zbl

[45] M. J. Smith, A new dynamic traffic model and the existence and calculation of dynamic user equilbria on congested capacity-constrained road networks, Transportation Res. B, 27B, No. 1 (1993), 49-63.

[46] J. Steinbach, On a variational inequality containing a memory term with an application in electro-chemical machining, J. Convex Anal., 5, No. 1 (1998), 63-80. | fulltext EuDML | MR | Zbl

[47] J. Steinbach, A variational inequality approach to free boundary problems with applications in mould filling (Birkhäuser-Verlag, 2002). | DOI | MR | Zbl

[48] V. Volterra, Sulle equazioni integro-differenziali della teoria della elasticità, Rend. Acc. Naz. Lincei, XVIII, No. 2 (1909), 295-301. | Zbl

[49] V. Volterra, Sulle equazioni integro-differenziali della elasticità nel caso della entropia, Rend. Acc. Naz. Lincei, XVIII, No. 2 (1909), 577-586. | Zbl

[50] V. Volterra, Sur les equation intégro-differentielles et leurs applications, Acta Math., XXXV (1912), 295-356. | DOI | MR | Zbl

[51] J. G. Wardrop, Some theoretical aspects of road traffic research. In Proceedings of the Institute of Civil Engineers, Part II (1952), 325-378).

[52] N. D. Yen, Hölder continuity of solutions to a parametric variational inequality, Appl. Math. Optim., 31 (1995), 245-255. | DOI | MR

[53] N. D. Yen, Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint, Math. Oper. Res., 20 (1995), 695-708. | DOI | MR | Zbl