Global Lipschitz Continuity of Solutions to Parameterized Variational Inequalities
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 45-69

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The question of Lipschitz continuity of solutions to parameterized variational inequalities with perturbed constraint sets is considered. Under the sole Lipschitz continuity assumption on data, a Lipschitz continuity result is proved which, in particular, holds for variational inequalities modeling evolutionary network equilibrium problems. Moreover, in view of real-life applications, a long-term memory is introduced and the corresponding variational inequality model is discussed.
@article{BUMI_2009_9_2_1_a2,
     author = {Maugeri, Antonino and Scrimali, Laura},
     title = {Global {Lipschitz} {Continuity} of {Solutions} to {Parameterized} {Variational} {Inequalities}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {45--69},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1170.49011},
     mrnumber = {2493644},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a2/}
}
TY  - JOUR
AU  - Maugeri, Antonino
AU  - Scrimali, Laura
TI  - Global Lipschitz Continuity of Solutions to Parameterized Variational Inequalities
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 45
EP  - 69
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a2/
LA  - en
ID  - BUMI_2009_9_2_1_a2
ER  - 
%0 Journal Article
%A Maugeri, Antonino
%A Scrimali, Laura
%T Global Lipschitz Continuity of Solutions to Parameterized Variational Inequalities
%J Bollettino della Unione matematica italiana
%D 2009
%P 45-69
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a2/
%G en
%F BUMI_2009_9_2_1_a2
Maugeri, Antonino; Scrimali, Laura. Global Lipschitz Continuity of Solutions to Parameterized Variational Inequalities. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 45-69. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a2/