Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2009_9_2_1_a14, author = {Coclite, G. M. and Karlsen, K. H. and Mishra, S. and Risebro, N. H.}, title = {Convergence of {Vanishing} {Viscosity} {Approximations} of 2 x 2 {Triangular} {Systems} of {Multi-Dimensional} {Conservation} {Laws}}, journal = {Bollettino della Unione matematica italiana}, pages = {275--284}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {1}, year = {2009}, zbl = {1178.35246}, mrnumber = {2493656}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a14/} }
TY - JOUR AU - Coclite, G. M. AU - Karlsen, K. H. AU - Mishra, S. AU - Risebro, N. H. TI - Convergence of Vanishing Viscosity Approximations of 2 x 2 Triangular Systems of Multi-Dimensional Conservation Laws JO - Bollettino della Unione matematica italiana PY - 2009 SP - 275 EP - 284 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a14/ LA - en ID - BUMI_2009_9_2_1_a14 ER -
%0 Journal Article %A Coclite, G. M. %A Karlsen, K. H. %A Mishra, S. %A Risebro, N. H. %T Convergence of Vanishing Viscosity Approximations of 2 x 2 Triangular Systems of Multi-Dimensional Conservation Laws %J Bollettino della Unione matematica italiana %D 2009 %P 275-284 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a14/ %G en %F BUMI_2009_9_2_1_a14
Coclite, G. M.; Karlsen, K. H.; Mishra, S.; Risebro, N. H. Convergence of Vanishing Viscosity Approximations of 2 x 2 Triangular Systems of Multi-Dimensional Conservation Laws. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 275-284. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a14/
[1] Optimal entropy solutions for conservation laws with discontinuous flux. Journal of Hyp. Diff. Eqns., 2 (4) (2005), 783-837. | DOI | MR | Zbl
- ,[2] Multidimensional hyperbolic partial differential equations. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford, 2007. First-order systems and applications. | MR
- ,[3] Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier thickener units. Numer. Math., 97 (1) (2004), 25-65. | DOI | MR | Zbl
- - - ,[4] Computational methods for multiphase flows in porous media. Computational science and Engineering, SIAM, 2006. | DOI | MR | Zbl
,[5] Convergence of Engquist-Osher scheme for a multidimensional triangular system of conservation laws, submitted. | Zbl
- - ,[6] A conservation law with point source and discontinuous flux function modeling continuous sedimentation. SIAM J. Appl. Math., 56 (2) (1995), 1980-2007. | DOI | MR
,[7] Solution of Cauchy problem for a conservation law with discontinuous flux function. SIAM J. Math. Anal, 23 (3) (1992), 635-648. | DOI | MR | Zbl
- ,[8] Lectures on non-linear hyperbolic differential equations. Mathematics and Applications, Vol 26, Springer, 1997. | MR
,[9] Convergence of finite volume schemes for triangular systems of conservation laws. Submitted. | DOI | MR | Zbl
- - ,[10] On the existence and compactness of a two-dimensional resonant system of conservation laws. Commun. Math. Sci., 5 (2), 2007. | MR | Zbl
- - ,[11] $L^{1}$ stability for entropy solution of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk., 3 (2003), 49 pages. | MR | Zbl
- - ,[12] Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux. Chinese Ann. Math. Ser. B, 25 (3) (2004), 287-318. | DOI | MR | Zbl
- ,[13] L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q < 2$. J. Math. Pures Appl. (9), 60 (3), (1981), 309-322. | MR | Zbl
,[14] Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux. Submitted. | DOI | MR | Zbl
,[15] Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal., 38 (2) (2000), 681-698. | DOI | MR | Zbl
,[16] A difference scheme for conservation laws with a discontinuous flux, the nonconvex case. SIAM J. Numer. Anal., 39 (4) (2001), 1197-1218. | DOI | MR | Zbl
,