Ambiguity Theory, Old and New
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 259-274.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This is an introductory survey of some recent developments of "Galois ideas" in Arithmetic, Complex Analysis, Transcendental Number Theory and Quantum Field Theory, and of some of their interrelations.
@article{BUMI_2009_9_2_1_a13,
     author = {Andr\'e, Yves},
     title = {Ambiguity {Theory,} {Old} and {New}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {259--274},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1189.11050},
     mrnumber = {2493655},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a13/}
}
TY  - JOUR
AU  - André, Yves
TI  - Ambiguity Theory, Old and New
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 259
EP  - 274
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a13/
LA  - en
ID  - BUMI_2009_9_2_1_a13
ER  - 
%0 Journal Article
%A André, Yves
%T Ambiguity Theory, Old and New
%J Bollettino della Unione matematica italiana
%D 2009
%P 259-274
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a13/
%G en
%F BUMI_2009_9_2_1_a13
André, Yves. Ambiguity Theory, Old and New. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 259-274. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a13/

[1] André Yves, Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Panoramas et Synthèses 17. Société Mathématique de France, Paris, 2004. | MR | Zbl

[2] André Yves, Galois theory, motives, and transcendental number theory, submitted. | DOI | MR | Zbl

[3] Belkale Prakash - Brosnan Patrick, Periods and Igusa local zeta functions, International Mathematics Research Notices. Vol. 2003, no. 49 (2003), 2655-2670. | DOI | MR | Zbl

[4] Bloch Spencer - Esnault Hélène - Kreimer Dirk, On motives associated to graph polynomials, Comm. Math. Phys., 267, no. 1 (2006), 181-225. | DOI | MR | Zbl

[5] Cartier Pierre, A mad day's work: from Grothendieck to Connes and Kontsevich. The evolution of concepts of space and symmetry [in Les relations entre les mathématiques et la physique théorique, 23-42, Inst. Hautes Âetudes Sci., Bures-sur-Yvette, 1998; Translated from the French by Roger Cooke. Bull. Amer. Math. Soc. (N.S.) 38, no. 4 (2001), 389-408 (electronic). | fulltext EuDML | DOI | MR

[6] Casale Guy, Le groupoïde de Galois de P1 et son irréductibilité, to appear in Commentarii Mathematici Helvetici. | DOI | MR

[7] Connes Alain, Renormalisation et ambiguïté galoisienne. Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. I. Astérisque No. 296 (2004), 113-143. | MR

[8] Connes Alain - Marcolli Matilde, Noncommutative geometry, quantum fields and motives. American Mathematical Society Colloquium Publications, 55. American Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi, 2008. | MR | Zbl

[9] Connes Alain - Marcolli Matilde, Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory. Frontiers in number theory, physics, and geometry. II (Springer, Berlin, 2007), 617-713. | DOI | MR | Zbl

[10] Connes Alain - Kreimer Dirk, Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Comm. Math. Phys. 210, no. 1 (2000), 249-273. | DOI | MR | Zbl

[11] Deligne Pierre - Goncharov Alexander, Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. École Norm. Sup. (4) 38, no. 1 (2005), 1-56. | fulltext EuDML | DOI | MR | Zbl

[12] Ehrhardt Caroline, Evariste Galois et la théorie des groupes. Fortune et réélaborations (1811-1910), thèse ENS (2007). | MR

[13] Furusho Hidekazu, Pentagon and hexagon equations, arXiv:math/0702128. | DOI | MR | Zbl

[14] Galois Evariste, Œuvres mathématiques, Gauthiers-Villars, 1951.

[15] Gray Jeremy, Linear differential equations and group theory from Riemann to Poincaré. Second edition. Birkhäuser Boston, Inc., Boston, MA, 2000. | MR | Zbl

[16] Grothendieck Alexandre, Esquisse d'un programme. With an English translation on pp. 243-283. London Math. Soc. Lecture Note Ser., 242, Geometric Galois actions, 1, 5-48, Cambridge Univ. Press, Cambridge, 1997. | MR

[17] Jordan Camille, Mémoire sur les équations différentielles linéaires à intégrale algébrique (1878), Oeuvres II, 13-140.

[18] Katz Nicholas, web page: http://www.monodromy.com/ | MR

[19] Kontsevich Maxim - Zagier Don, Periods. Mathematics unlimited-2001 and beyond (Springer, Berlin, 2001), 771-808. | MR

[20] Lang Serge, Introduction to transcendental numbers, Addison-Wesley Publishing Co., Reading, Mass-London-Don Mills, Ont. (1966). | MR | Zbl

[21] Lautman Albert, Essai sur les notions de structure et d'existence en mathématiques. Reprint, Vrin 2006. | DOI | MR

[22] Lochak Pierre - Schneps Leila, Open problems in Grothendieck-Teichmller theory. Problems on mapping class groups and related topics, 165-186, Proc. Sympos. Pure Math., 74, Amer. Math. Soc., Providence, RI, 2006. | DOI | MR | Zbl

[23] Malgrange Bernard, On nonlinear differential Galois theory. Frontiers in mathematical analysis and numerical methods, 185-196, World Sci. Publ., River Edge, NJ, 2004. | MR

[24] Morales-Ruiz Juan - Ramis Jean Pierre, Galoisian obstructions to integrability of Hamiltonian systems. I, II. Methods Appl. Anal., 8, no. 1 (2001), 33-95, 97-111. | DOI | MR | Zbl

[25] Picard Emile, La vie et l'oeuvre de Joseph Boussinesq, Discours et Notices, Gauthiers-Villars (1936).

[26] Van Der Put Marius - Singer Michael, Galois theory of linear differential equations, Springer Grundlehren der math. Wiss. 328 (2003). | DOI | MR | Zbl

[27] Riemann Bernhard, Beiträge zur Theorie der durch die Gauss'sche Reihe $F(\alpha, \beta, \gamma, x)$ darstellbaren Funktionen, Abh. Kon. Ges. Wiss. Gottingen, VII Math. Classe A-22 (1857). | fulltext EuDML

[28] Schlesinger Ludwig, Handbuch der Theorie der linearen Differentialgleichungen. In zwei Banden. Band II: Theil 1, (Schluss-) Theil 2. (German) Reprint. Bibliotheca Mathematica Teubneriana, Band 31 Johnson Reprint Corp., New York-London 1968. | fulltext EuDML | MR

[29] H. A. Schwarz, Über diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elements darstellt, J. Reine Angew. Math., 75 (1872), 292-335. | fulltext EuDML | DOI | MR | Zbl

[30] Umemura Hiroshi, Lie-Drach-Vessiot theory-infinite-dimensional differential Galois theory. CR-geometry and overdetermined systems (Osaka, 1994), 364-385, Adv. Stud. Pure Math., 25, Math. Soc. Japan, Tokyo, 1997. | MR

[31] Weil André, De la métaphysique aux mathématiques (1960), Oeuvres, vol. II, Springer, 408-412.

[32] Singularités irrégulières - Correspondance et documents, Pierre Deligne - Bernard Malgrange - Jean-Pierre Ramis, Documents Mathématiques 5 (2007), SMF. | MR