On the Geometrisation Conjecture
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 245-257.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{BUMI_2009_9_2_1_a12,
     author = {Besson, G.},
     title = {On the {Geometrisation} {Conjecture}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {245--257},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1172.53041},
     mrnumber = {2493654},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a12/}
}
TY  - JOUR
AU  - Besson, G.
TI  - On the Geometrisation Conjecture
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 245
EP  - 257
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a12/
LA  - en
ID  - BUMI_2009_9_2_1_a12
ER  - 
%0 Journal Article
%A Besson, G.
%T On the Geometrisation Conjecture
%J Bollettino della Unione matematica italiana
%D 2009
%P 245-257
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a12/
%G en
%F BUMI_2009_9_2_1_a12
Besson, G. On the Geometrisation Conjecture. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 245-257. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a12/

[1] L. Bessières, Conjecture de Poincaré : la preuve de R. Hamilton and G. Perelman, La gazette des mathématiciens, 106 (2005). | MR

[2] L. Bessières - G. Besson - M. Boileau - S. Maillot - J. Porti, Geometrization of 3-manifolds, Monograph in preparation.

[3] L. Bessières - G. Besson - M. Boileau - S. Maillot - J. Porti, Weak collapsing and geometrisation of aspherical 3-manifolds, arXiv:0706.2065 January 2008.

[4] G. Besson, The Geometrization Conjecture after R. Hamilton and G. Perelman, To appear in Rendiconti del Seminario Matematico, Torino. | MR

[5] G. Besson, Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci (d'après Perelman), In Séminaire Bourbaki 2004-2005, Astérisque, 307, 309-348. Société mathématiques de France, Paris, France, 2006. | fulltext EuDML | MR

[6] M. Boileau - J. Porti, Geometrization of 3-orbifolds of cyclic type, Astérisque, 272 (2001), 208. Appendix A by Michael Heusener and Porti. | MR

[7] M. Boileau - B. Leeb - J. Porti, Geometrization of 3-dimensional orbifolds, Ann. of Math. (2) 162 (1) (2005), 195-290. | DOI | MR | Zbl

[8] M. Boileau - S. Maillot - J. Porti, Three-dimensional orbifolds and their geometric structures, volume 15 of Panoramas and Synthèses. Société Mathématique de France, Paris 2003. | MR

[9] J.-P. Bourguignon, L'équation de la chaleur associée à la courbure de Ricci, In Séminaire Bourbaki 1985-86, Astérisque, 45-61. Société Mathématique de France 1987. | fulltext EuDML | MR

[10] H.-D. Cao - X.-P. Zhu, A Complete Proof of the Poincaré and Geometrization Conjectures and application of the Hamilton-Perelman theory of the Ricci flow, Asian Journal of Mathematics, 10 (2) (2006), 165-492. | DOI | MR | Zbl

[11] B. Chow - D. Knopf, The Ricci flow: an introduction, Mathematical surveys and monographs, 110 A.M.S. 2004. | DOI | MR

[12] M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math., 56:5-99 (1983), 1982. | fulltext EuDML | MR

[13] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry, 17 (1982), 255-306. | MR | Zbl

[14] R. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geometry, 24, 153-179 (1986). | MR | Zbl

[15] J. Hempel, 3-manifolds, Annals of mathematics studies, 086, Princeton University Press Princeton, 1976. | MR

[16] V. Kapovitch, Perelman's Stability Theorem. ArXiv: math.DG/0703002, 13 mars, 2007. | DOI | MR

[17] B. Kleiner - J. Lott, Notes on Perelman's papers, ArXiv: math.DG/0605667, 25 mai, 2006. | DOI | MR

[18] S. Maillot. Some application of the Ricci flow to 3-manifolds, Séminaire de théorie spectrale et géométrie, 25, 2006-2007. | fulltext EuDML | DOI | MR

[19] C. T. Mcmullen, Minkowski's conjecture, well-rounded lattices and topological dimension, J. Amer. Math. Soc., 18 (3) (2005), 711-734 (electronic) | DOI | MR | Zbl

[20] J. Morgan - G. Tian, Ricci Flow and the Poincaré Conjecture, Clay mathematics monographs, 3, American Mathematical Society, 2007. | MR

[21] G. Perelman, The entropy formula for the Ricci flow and its geometric applications. ArXiv: math.DG/0211159, november, 2002.

[22] G. Perelman, Ricci flow with surgery on three-manifolds, ArXiv: math.DG/0303109, mars, 2003.

[23] V. Poenaru Poincaré and l'hypersphère, Pour la Science, Dossier hors-série n. 41 (2003), 52-57.

[24] H. Poincaré, Cinquième complément à l'analysis situs, Rend. Circ. Mat. Palermo, 18 (1904), 45-110. | Zbl

[25] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc., 15, (1983), 401-487. | DOI | MR | Zbl

[26] W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bulletin of the Amer. Math. Soc., 6, (3) (1982), 357-381. | DOI | MR