Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2009_9_2_1_a10, author = {Giannessi, F. and Matroeni, G. and Yang, X. Q.}, title = {A {Survey} on {Vector} {Variational} {Inequalities}}, journal = {Bollettino della Unione matematica italiana}, pages = {225--237}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {1}, year = {2009}, zbl = {1170.49007}, mrnumber = {2493652}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a10/} }
TY - JOUR AU - Giannessi, F. AU - Matroeni, G. AU - Yang, X. Q. TI - A Survey on Vector Variational Inequalities JO - Bollettino della Unione matematica italiana PY - 2009 SP - 225 EP - 237 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a10/ LA - en ID - BUMI_2009_9_2_1_a10 ER -
Giannessi, F.; Matroeni, G.; Yang, X. Q. A Survey on Vector Variational Inequalities. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 225-237. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a10/
[1] On nondifferentiable and nonconvex Vector Optimization Problems. J. Optim. Theory Appl., 106, no. 3 (2000), 475-488. | DOI | MR | Zbl
- ,[2] Existence and approximation of solutions of nonlinear variational inequalities. Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1080-1086. | DOI | MR | Zbl
,[3] Vector Variational Inequality and Vector Optimization, In "Lecture Notes in Econ. and Mathem. Systems", 285 (Springer-Verlag, New York-Berlin, 1987), 408-416.
- ,[4] Vector optimization. Set-valued and variational analysis. Lecture Notes in Economics and Mathematical Systems, 541 (Springer-Verlag, Berlin, 2005). | MR | Zbl
, - - ,[5] The vector complementary problem and its equivalences with vector minimal element in ordered spaces. J. Math. Anal. Appl., 153 (1990), 136-158. | DOI | MR | Zbl
- ,[6] On the variational inequality model for network equilibrium. Internal Report, Department of Mathematics, University of Pisa, no. 3 (1993), 196 (724).
- ,[7] Minty vector variational inequality, efficiency and proper efficiency. (English summary) Vietnam J. Math., 32, no. 1 (2004), 95-107. | MR | Zbl
- and ,[8] Least element problems of feasible sets for vector F-complementarity problems with pseudomonotonicity. (Chinese) Acta Math. Sinica, 48, no. 3 (2005), 499-508. | MR | Zbl
- ,[9] Strong vector variational inequalities in Banach spaces. Applied Mathematics Letters, 19 (2006), 362-368. | DOI | MR | Zbl
- ,[10] Theorems of alternative, quadratic programs and complementary problems. In Cottle R. W. and Giannessi F. and Lions J. L. (eds.), Variational Inequality and Complementary Problems (Wiley, New York 1980). | MR | Zbl
,[11] On Minty variational principle. In New Trends in Mathematical Programming (Kluwer Academic Publishers, 1998), 93-99. | DOI | MR | Zbl
,[12] F. GIANNESSI (ed.), Vector Variational Inequalities and Vector Equilibria. Kluwer Academic Publishers, Dordrecht, Boston, London, 2000. | DOI | MR | Zbl
[13] Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Programming (Ser. B), 48, no. 2 (1990), 161-220. | DOI | MR | Zbl
- ,[14] Strong vector F-complementary problem and least element problem of feasible set. Nonlinear Anal., 61, no. 6 (2005), 901-918. | DOI | MR | Zbl
- ,[15] An introduction to variational inequalities and their applications. Academic Press, New York, 1980. | MR | Zbl
- ,[16] On the generalized vector variational inequality problem. J. Math. Anal. Appl., 206, no. 1 (1997), 42-58. | DOI | MR | Zbl
- ,[17] On the use of KKM multifunctions in fixed point theory and related topics. J. Math. Anal. Appl., 97, no. 1 (1983), 151-201. | DOI | MR | Zbl
,[18] Generalized Vector Variational Inequality and its duality for set-valued maps. Appl. Mathem. Lett., 11 (1998), 21-26. | DOI | MR | Zbl
- - - ,[19] Vector variational inequality as a tool for studying vector optimization problems. Nonlinear Anal., 34, no. 5 (1998), 745-765. | DOI | MR | Zbl
- - - ,[20] On Minty Vector Variational Inequality. In [12], 351-361. | DOI | MR | Zbl
,[21] Differential and sensitivity properties of gap functions for Minty vector variational inequalities. J. Math. Anal. Appl., 337, no. 1 (2008), 386-398. | DOI | MR | Zbl
- ,[22] Implicit variational problems and quasi variational inequalities. Nonlinear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975), Lecture Notes in Math., 543 (Springer, Berlin, 1976), 83-156. | MR
,[23] On relations between Vector Optimization Problems and Vector Variational Inequalities. J. Optim. Theory Appl., 113, no. 3 (2002), 583-596. | DOI | MR | Zbl
- ,[24] Some Remarks On Minty Vector Variational Inequality. J. Optim. Theory Appl., 121, no. 1 (2004), 193-201. | DOI | MR | Zbl
- - ,[25] Vector complementarity and minimal element problems. J. Optim. Theory Appl., 77, no. 3 (1993), 483-495. | DOI | MR | Zbl
,[26] Vector variational inequalities and its duality. Nonl. Anal., TMA, 21 (1993), 867-877. | DOI | MR
,[27] On vector variational inequalities: application to vector equilibria. J. Optim. Theory Appl., 95 (1997), 431-443. | DOI | MR | Zbl
- ,[28] On monotone and strongly monotone Vector Variational Inequalities. In [12], 467-478. | DOI | MR | Zbl
- ,