Schur-Finite Motives and Trace Identities
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 37-44

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We provide a sufficient condition that ensures the nilpotency of endomorphisms universally of trace zero of Schur-finite objects in a category of homological type, i.e., a $\mathbb{Q}$-linear $\otimes$-category with a tensor functor to super vector spaces. We present some applications in the category of motives, where our result generalizes previous results about finite-dimensional objects, in particular by Kimura. We also present some facts which suggest that this might be the best generalization possible of this line of proof.
@article{BUMI_2009_9_2_1_a1,
     author = {Del Padrone, Alessio and Mazza, Carlo},
     title = {Schur-Finite {Motives} and {Trace} {Identities}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {1},
     year = {2009},
     zbl = {1179.14020},
     mrnumber = {2493643},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a1/}
}
TY  - JOUR
AU  - Del Padrone, Alessio
AU  - Mazza, Carlo
TI  - Schur-Finite Motives and Trace Identities
JO  - Bollettino della Unione matematica italiana
PY  - 2009
SP  - 37
EP  - 44
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a1/
LA  - en
ID  - BUMI_2009_9_2_1_a1
ER  - 
%0 Journal Article
%A Del Padrone, Alessio
%A Mazza, Carlo
%T Schur-Finite Motives and Trace Identities
%J Bollettino della Unione matematica italiana
%D 2009
%P 37-44
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a1/
%G en
%F BUMI_2009_9_2_1_a1
Del Padrone, Alessio; Mazza, Carlo. Schur-Finite Motives and Trace Identities. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 37-44. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a1/