Schur-Finite Motives and Trace Identities
Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 37-44
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We provide a sufficient condition that ensures the nilpotency of endomorphisms universally of trace zero of Schur-finite objects in a category of homological type, i.e., a $\mathbb{Q}$-linear $\otimes$-category with a tensor functor to super vector spaces. We present some applications in the category of motives, where our result generalizes previous results about finite-dimensional objects, in particular by Kimura. We also present some facts which suggest that this might be the best generalization possible of this line of proof.
@article{BUMI_2009_9_2_1_a1,
author = {Del Padrone, Alessio and Mazza, Carlo},
title = {Schur-Finite {Motives} and {Trace} {Identities}},
journal = {Bollettino della Unione matematica italiana},
pages = {37--44},
year = {2009},
volume = {Ser. 9, 2},
number = {1},
zbl = {1179.14020},
mrnumber = {2493643},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a1/}
}
Del Padrone, Alessio; Mazza, Carlo. Schur-Finite Motives and Trace Identities. Bollettino della Unione matematica italiana, Série 9, Tome 2 (2009) no. 1, pp. 37-44. http://geodesic.mathdoc.fr/item/BUMI_2009_9_2_1_a1/