A Sufficient Condition for the $C^2$-Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map
Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 695-707.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We prove a result about the rectifiability of class $C^2$ of the set of regular values (in the sense of Clarke) of a Lipschitz map $\varphi \colon \mathbb{R}^n \rightarrow \mathbb{R}^N$ with $n N$
@article{BUMI_2008_9_1_3_a9,
     author = {Delladio, Silvano},
     title = {A {Sufficient} {Condition} for the $C^2${-Rectifiability} of the {Set} of {Regular} {Values} (in the {Sense} of {Clarke)} of a {Lipschitz} {Map}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {695--707},
     publisher = {mathdoc},
     volume = {Ser. 9, 1},
     number = {3},
     year = {2008},
     zbl = {1211.49051},
     mrnumber = {2455340},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a9/}
}
TY  - JOUR
AU  - Delladio, Silvano
TI  - A Sufficient Condition for the $C^2$-Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map
JO  - Bollettino della Unione matematica italiana
PY  - 2008
SP  - 695
EP  - 707
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a9/
LA  - en
ID  - BUMI_2008_9_1_3_a9
ER  - 
%0 Journal Article
%A Delladio, Silvano
%T A Sufficient Condition for the $C^2$-Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map
%J Bollettino della Unione matematica italiana
%D 2008
%P 695-707
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a9/
%G en
%F BUMI_2008_9_1_3_a9
Delladio, Silvano. A Sufficient Condition for the $C^2$-Rectifiability of the Set of Regular Values (in the Sense of Clarke) of a Lipschitz Map. Bollettino della Unione matematica italiana, Série 9, Tome 1 (2008) no. 3, pp. 695-707. http://geodesic.mathdoc.fr/item/BUMI_2008_9_1_3_a9/

[1] G. Alberti, On the structure of singular sets of convex functions. Calc. Var., 2 (1994), 17-27. | DOI | MR | Zbl

[2] G. Anzellotti - E. Ossanna, Singular sets of surfaces with generalized curvatures. Manuscripta Math., 86 (1995), 417-433. | fulltext EuDML | DOI | MR | Zbl

[3] G. Anzellotti - R. Serapioni, $C^k$-rectifiable sets. J. reine angew. Math., 453 (1994), 1-20. | fulltext EuDML | MR

[4] B. Bojarski - P. Hajlasz - P. Strzelecki, Sard's theorem for mappings in Holder and Sobolev spaces. Manuscripta Math., 118, n. 3 (2005), 383-397. | DOI | MR | Zbl

[5] F.H. Clarke - Yu.S. Ledyaev - R.J. Stern - P.R. Wolenski, Nonsmooth analysis and control theory. Graduate Texts in Mathematics, Springer Verlag 1998. | MR | Zbl

[6] S. Delladio, Taylor's polynomials and non-homogeneous blow-ups. Manuscripta Math., 113, n. 3 (2004), 383-396. | DOI | MR | Zbl

[7] S. Delladio, Non-homogeneous dilatations of a functions graph and Taylors formula: some results about convergence. Real Anal. Exchange, 29, n. 2 (2003/2004), 687-712. | DOI | MR | Zbl

[8] S. Delladio, A result about $C^2$-rectifiability of one-dimensional rectifiable sets. Application to a class of one-dimensional integral currents. Boll. Un. Matem. Italiana, 10-B (2007), 237-252. | fulltext bdim | fulltext EuDML | MR | Zbl

[9] S. Delladio, A sufficient condition for the $C^H$-rectifiability of Lipschitz curves. To appear on J. Geom. Anal. [PDF available at the page http://eprints.biblio.unitn.it/ archive/00000934/]. | DOI | MR | Zbl

[10] L.C. Evans - R.F. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions. (Studies in Advanced Math.) CRC Press 1992. | MR

[11] H. Federer, Geometric Measure Theory. Springer-Verlag 1969. | MR | Zbl

[12] J.H.G. Fu, Some Remarks On Legendrian Rectifiable Currents. Manuscripta Math., 97, n. 2 (1998), 175-187. | DOI | MR | Zbl

[13] J.H.G. Fu - Erratum to "Some Remarks On Legendrian Rectifiable Currents". Manuscripta Math., 113, n. 3 (2004), 397-401. | DOI | MR | Zbl

[14] P. Mattila, Geometry of sets and measures in Euclidean spaces. Cambridge University Press, 1995. | DOI | MR | Zbl

[15] L. Simon, Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Canberra, Australia, vol. 3, 1984. | MR

[16] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970. | MR | Zbl